Lecture II, CONTINUATION OF THE BASIC IDEA

I shall first study the specialization of the lower row of the diagram in (I.28) to the case of approximation by a standard normal distribution as treated in Lemmas I. 3 and I. 4 and the comments below these lemmas. Then I shall return to the proof of Lemma I. 2 in the general abstract formulation.

As I have already indicated briefly in the comments below Lemmas I. 3 and I.4, the lower row

$$
\begin{equation*}
\mathfrak{Z}_{0} \underset{U_{0}}{\stackrel{T_{0}}{\rightleftarrows}} x_{0} \underset{1_{0}}{\stackrel{E_{0}}{\rightleftarrows}} \mathrm{R} \tag{1}
\end{equation*}
$$

of Diagram (I.28) is specialized in the following way for the treatment of the standard normal approximation problem. (In order to emphasize this specialization I shall write N, T_{N}, and U_{N} instead of E_{0}, T_{0}, and U_{0}.) Let

$$
\begin{equation*}
N h=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} h(x) e^{-\frac{1}{2} x^{2}} d x, \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\left(T_{N} f\right)(w)=f^{\prime}(w)-w f(w) \tag{3}
\end{equation*}
$$

and
(4) $\quad\left(U_{N} h\right)(w)=e^{\frac{1}{2} w^{2}} \int_{-\infty}^{w}[h(x)-N h] e^{-\frac{1}{2} x^{2}} d x=-e^{\frac{1}{2} w^{2}} \int_{W}^{\infty}[h(x)-N h] e^{-\frac{1}{2} x^{2}} d x$.

The equality of the two alternative forms given in (4) follows from

$$
\begin{equation*}
\int_{-\infty}^{\infty}[h(x)-N h] e^{-\frac{1}{2} x^{2}} d x=0 \tag{5}
\end{equation*}
$$

