ON TP2 AND LOG-CONCAVITY

BY SOMESH DAS GUPTA and S. K. SARKAR Indian Statistical Institute and Temple University

Inter-relations between the TP_2 property and log-concavity of density functions have been investigated. The general results are then applied to noncentral chi-square density functions and beta density functions.

1. Results on Density Functions

Definition 1. A function $f: \mathcal{R}^2 \to \mathcal{R}$ is said to be TP₂ (Karlin (1968)) if, for $x_1 < x_2, y_1 < y_2$

(1.1)
$$f(x_1, y_2) f(x_2, y_1) \leq f(x_1, y_1) f(x_2, y_2).$$

We shall say that 1/f is TP₂, if (1.1) holds for f with the inequality reversed.

Let X be a positive random variable having the p.d.f. $f(\cdot, \theta, \lambda)$ with respect to Lebesgue measure; $\theta > 0, \lambda \ge 0$.

Definition 2. The p.d.f. $f(x,\theta,\lambda)$ is said to have the reproductive property (**RP**) in θ , if there exists a distribution function $G(\cdot,s)$ on \mathcal{R}^+ (s > 0) such that

(1.2)
$$\int_0^x f(x-y,\theta,\lambda) G(dy,s) = f(x,\theta+s,\lambda).$$

THEOREM 1. Suppose $f(x,\theta,\lambda)$ has the RP in θ . Then (i) $f(x,\theta,\lambda)$ TP₂ in $(x,\lambda) \rightarrow 1/f(x,\theta,\lambda)$ TP₂ in (θ,λ) , (ii) $f(x,\theta,\lambda)$ TP₂ in $(x,\theta) \rightarrow f(x,\theta,\lambda)$ log-concave in θ .

Proof. (i) For $0 < x_1 < x_2$, $\lambda_1 < \lambda_2$ we have

(1.3)
$$f(x_2,\theta,\lambda_1)f(x_1,\theta,\lambda_2) \leq f(x_2,\theta,\lambda_2)f(x_1,\theta,\lambda_1).$$

Write $x_1 = x_2 - y$. Integrating (1.3) with respect to G(dy, s) we get

(1.4)
$$f(x_2,\theta,\lambda_1)f(x_2,\theta+s,\lambda_2) \leq f(x_2,\theta,\lambda_2)f(x_2,\theta+s,\lambda_1),$$

which shows that $1/f(x,\theta,\lambda)$ is TP₂ in (θ,λ) .

(ii) For $0 < x_1 < x_2$, $\theta_1 < \theta_2$, we have

(1.5)
$$f(x_1,\theta_2,\lambda)f(x_2,\theta_1,\lambda) \leq f(x_2,\theta_2,\lambda)f(x_1,\theta_1,\lambda).$$

Write
$$x_1 = x_2 - y$$
. Integrating (1.5) with respect to $G(dy, s)$ we get

(1.6)
$$f(x_2,\theta_2+s,\lambda)f(x_2,\theta_1,\lambda) \leq f(x_2,\theta_2,\lambda)f(x_2,\theta_1+s,\lambda),$$

which shows that $f(x, \theta, \lambda)$ is log-concave in θ .

Definition 3. The p.d.f. $f(x, \theta, \lambda)$ is said to have the mixture property (MP) in (θ, λ) if there exists a non-negative random variable K with the distribution $H(\cdot, \tau)$ with $\tau > 0$ such that

(1.7)
$$\int_0^\infty f(x,\theta+k,\lambda) H(dk,\tau) = f(x,\theta,\lambda+\tau).$$

Suppose *H* in Definition 3 possesses a density function *h* with respect to a σ -finite measure ν .

¹ Supported by a grant from the National Science Foundation, Grant No. MSC8202209 at University of Minnesota.

AMS 1980 subject classifications. 60E15, 26D99.

Key words and phrases: Totally positive of order 2 (TP₂), log-concavity.