2. <u>GLIVENKO-CANTELLI-convergence: The VAPNIK-CHERVONENKIS-Theory with some</u> <u>extensions.</u>

Let us start with the simplest case: Assume that $(\xi_i)_{i \in \mathbb{N}}$ is a sequence of i.i.d. random variables on some p-space (Ω, F, \mathbb{P}) with distribution function (df) F; let F_n be the EMPIRICAL df pertaining to ξ_1, \ldots, ξ_n , i.e.,

$$F_{n}(t) := \frac{1}{n} \sum_{i=1}^{n} 1_{(-\infty,t]}(\xi_{i}), t \in \mathbb{R}.$$

Then the classical GLIVENKO-CANTELLI Theorem states:

(8)
$$D_n^F := \sup_{t \in \mathbb{R}} |F_n(t) - F(t)| \neq 0 \mathbb{P}-a.s.$$

(Note that D_n^F is a random variable since $D_n^F = \sup_{t \in \mathbf{Q}} |F_n(t) - F(t)|$, where \mathbf{Q} denotes the rationals.)

The proof of (8) usually runs as follows:

- a) One shows that (8) holds true if the ξ_i 's are uniformly distributed on (0,1).
- b) Using the QUANTILE TRANSFORMATION

 $s \mapsto F^{-1}(s) := \inf\{t \in \mathbb{R}: F(t) \ge s\}, s \in (0,1)$

and a) one obtains (8) for the SPECIAL VERSIONS $\hat{\xi}_i := F^{-1}(n_i)$, where the n_i 's are independent and uniformly distributed on (0,1) (and defined on the same p-space as the ξ_i 's). Note that $L\{\hat{\xi}_i\} = L\{\xi_i\}$ for each i; even more, by independence, one has $L\{(\hat{\xi}_i)_{i\in\mathbb{N}}\} = L\{(\xi_i)_{i\in\mathbb{N}}\}.$

c) Reasoning on the fact that the validity of (8) only dependes on $L\{(\xi_i)_{i\in\mathbb{N}}\}$ the proof is concluded.

In view of the more general situations we shall consider later on in this sec-