SOME RECENT RESULTS IN COMPETING RISKS THEORY

Asit P. Basu University of Missouri

and

John P. Klein

Ohio State University

1. Introduction

The problems of competing risks and complementary risks arise quite naturally in a number of contexts, particularly in problems of survival analysis and reliability theory. The problems, in their simplest form, may be described as follows. Let X_i be a random variable with cumulative distribution function (C.D.F.) $F_i(x)$, (i = 1,2,...,p). We assume that the X_i 's are not observable but $U = \min(X_1, \ldots, X_p)$ or $V = \max(X_1, \ldots, X_p)$ is. We would like to determine uniquely the marginal C.D.F.'s, F_i 's, from that of U in the competing risks problem or from that of V in the complementary risks problem. We would also consider related inference problems.

As examples of the concepts consider the following:

- (a) Let X_i be the time to death (failure) from cause C_i (of component C_i). Here X_i 's are not observable but we observe a death time U (or time to series system failure) or a time V at which the last remaining duplicated organ fails (time to failure of a parallel system).
- (b) In survival analysis randomly censored data correspond to the situation when p = 2, X_1 is the variable of interest and X_2 the censoring variable.