ON THE PERFORMANCE OF ESTIMATES IN PROPORTIONAL HAZARD AND LOG-LINEAR MODELS

Kjell A. Doksum

Department of Statistics, University of California, Berkeley

1. Introduction

Let T_1, T_2, \ldots, T_n be independent survival times with T_i having distribution function (d.f.) F_i , density f_i and hazard rate $\lambda_i(t) = f_i(t)/[1-F_i(t)]$.

One model often used in the analysis of survival experiments is the proportional hazard model where

(1)
$$\lambda_{i}(t) = \Delta_{i}\lambda(t) , t \ge 0$$

for some constant $\Delta_i > 0$. Here $\lambda(t) = f(t)/[1-F(t)]$ for d.f. F with density f. In a different context, this model was considered by Lehmann (1953) and Savage (1956) in the equivalent form $F_i(t) = 1-[1-F(t)]^{\Delta_i}$, some d.f. F. It was used by Cox (1972) in situations where the distribution of T_i depends on p covariates x_{i1}, \dots, x_{ip} . Cox modeled this dependence by assuming

(2)
$$\lambda_{i}(t) = \Delta_{i}\lambda(t)$$
, $\Delta_{i} = \exp(\sum_{j=1}^{p} x_{ij}\beta_{j})$,

where $\underset{\sim}{\beta} = (\beta_1, \dots, \beta_p)^T$ is a vector of regression coefficients.

Another model often used with survival distributions is the scale model where

(3)
$$F_i(t) = G(t/\tau_i)$$
, some $\tau_i > 0$, some d.f. G.