IMS Lecture Notes - Monograph Series (1994) Volume 24

LOCALLY BEST INVARIANT TESTS FOR MULTIVARIATE NORMALITY IN CURVED FAMILIES WITH μ KNOWN

BY TAKEAKI KARIYA AND EDWARD I. GEORGE

Hitotsubashi University and University of Texas at Austin

This paper is a continuation of Kariya and George (1992) and derives the LBI tests and their asymptotic null and nonnull distributions in such curved families as an arithmetic normal mixture, a geometric normal mixture, an exponentiald family, when location parameter μ is known.

1. Introduction and Summary. Generalizing the arguments in Kuwana and Kariya (1991), Kariya and George (1992) formulated a testing problem in an elliptically contoured curved family, derived a general form of the LBI (locally best invariant) test and the null and nonnull distributions of the LBI test, and proposed a measure of the local departure of an elliptically contoured curved family from normality. In this paper, we treat the special case where location parameter $\mu (\in \mathbb{R}^p)$ is known, because the LBI test is quite different from the one when μ is unknown and because the location invariance is not available in a multivariate linear model with iid errors as will be discussed below. In an arithmetic normal mixture, a geometric normal mixture, and an exponential-d family as subfamilies, the problem is discussed in details.

In our model, a deviation from the normal family with mean μ known

$$\mathbb{N}_{\mu} = \{ N_p(\mu, \Sigma) : \Sigma \in \mathbb{S}(p) \}.$$
(1.1)

is described by a real parameter θ where a specific value, say $\theta = 0$, corresponds to the normal family \mathbb{N}_{μ} in (1.1). where $\mathbb{S}(p)$ denotes the set of $p \times p$ positive definite matrices. Since $N_p(\mu, \Sigma)$ is a location and scale family of (μ, Σ) , it is natural to consider the location and scale family with pdf's of the form

$$p_{\theta}(x \mid \mu, \Sigma) = |\Sigma|^{-1/2} f_{\theta}((x - \mu)' \Sigma^{-1}(x - \mu)), \qquad (1.2)$$

^{*} Kariya's portion is in part supported by the Ministry of Education, Grant General C 04630014.

AMS 1980 Subject Classifications: Primary 62H15.

Key words and phrases: Curved model, locally best invariant test for multivariate normality, Mardia's test.