EXTINCTION PROBABILITIES OF BRANCHING PROCESSES IN RANDOM ENVIRONMENTS

D.R. Grey and Lu Zhunwei University of Sheffield

Abstract

In the supercritical branching process with independent and identically distributed environments, it is shown that under certain regularity conditions there exists a parameter $\theta_0 > 0$ such that the probability of extinction starting with k individuals, q_k , is asymptotically of order not less than $k^{-\theta_0}$ and of smaller order than $k^{-\theta}$ for any $\theta < \theta_0$. An application to the optimal choice of strategy for minimizing the probability of extinction is mentioned.

1. Introduction and Statement of Results. We consider a branching process $\{Z_n; n = 0, 1, 2...\}$, where Z_n denotes the population size at time *n*. Reproduction is affected by a sequence of environment variables $\bar{\zeta} = \{\zeta_0, \zeta_1, \zeta_2, ...\}$ in the following way: for each *n*, conditional on $\bar{\zeta}$ and $Z_0, Z_1, ..., Z_n$, the family sizes of the Z_n individuals at time *n* are independent random variables each with a distribution which is determined by ζ_n , and whose probability generating function (p.g.f.) we shall denote by ϕ_{ζ_n} . Then Z_{n+1} is just the sum of these family sizes.

Particular models for the environment variables are a sequence of independent identically distributed (i.i.d.) random variables (Smith and Wilkinson [4]) and, more generally, a stationary ergodic sequence (Athreya and Karlin [1]). In this paper, we consider only the Smith-Wilkinson model, although subsequent work has generalized the results to certain types of Athreya-Karlin model.

Let $q(\bar{\zeta})$ be the probability, conditional on $\bar{\zeta}$, that the population becomes extinct starting with a single ancestor:

$$q(\overline{\zeta}) = P(Z_n \to 0 \text{ as } n \to \infty | \overline{\zeta}, Z_0 = 1).$$

Then, because, conditional on the environment sequence, lines of descent are independent, the unconditional probability of extinction starting with k ancestors is

$$q_{k} = E\left[q\left(\bar{\zeta}\right)^{k}\right]$$