SOME MAJORIZATION INEQUALITIES FOR FUNCTIONS OF EXCHANGEABLE RANDOM VARIABLES

BY PHILIP J. BOLAND,¹ FRANK PROSCHAN,² AND Y.L. TONG³

University College, Dublin, Florida State University, and Georgia Institute of Technology

> This paper contains inequalities for the expectations of permutation-invariant concave functions and Schur-concave functions of the partial sums of nonnegative exchangeable random variables. Two majorization inequalities are derived, and an application in reliability theory is presented.

1. Introduction and Summary. For fixed n > 1 let $\mathbf{X} = (X_1, \ldots, X_n)$ denote an *n*-dimensional random vector with density function $f(\mathbf{x})$ that is absolutely continuous w.r.t. the Lebesgue measure or the product measure of counting measures. X_1, \ldots, X_n are said to be exchangeable[†] if f is invariant under permutations of its arguments. This paper develops inequalities for the expectations of functions of partial sums of X_1, \ldots, X_n .

The notion of majorization defines a partial ordering of the diversity of the components of vectors. Let $\mathbf{a} = (a_1, \ldots, a_n)$, $\mathbf{b} = (b_1, \ldots, b_n)$ be two *n*-dimensional vectors and let $a_{[1]} \geq \cdots \geq a_{[n]}, b_{[1]} \geq \cdots \geq b_{[n]}$ denote their ordered components. **a** is said to majorize **b** (in symbols $\mathbf{a} \succ \mathbf{b}$) if

$$\Sigma_1^h a_{[i]} \ge \Sigma_1^h b_{[i]}$$
 for $h = 1, \dots, n-1$

and $\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} b_i$. It is known that $\mathbf{a} \succ \mathbf{b}$ iff there exists a doubly stochastic matrix Q such that $\mathbf{b} = \mathbf{a}Q$, i.e., \mathbf{b} is an "average" of \mathbf{a} . A function $\psi : \mathbb{R}^n \to \mathbb{R}$ is said to be a Schur-concave function if $\mathbf{a} \succ \mathbf{b}$ implies $\psi(\mathbf{a}) \leq \psi(\mathbf{b})$. For a comprehensive treatment of majorization and Schur functions, see Marshall and Olkin (1979).

AMS 1980 subject classifications. 60E15, 62H99.

¹Research partially supported by the Air Force Office of Scientific Research, AFSC, USAF, under Grant AFOSR 88-0040.

²Research supported by the Air Force Office of Scientific Research, AFSC, USAF, under Grant AFOSR 88-0040.

³Research partially supported by NSF Grants DMS-8502346 and DMS-8801327.

Key words and phrases. Majorization inequalities, exchangeable random variables, concave and Schur-concave functions, moment inequalities.

[†] More precisely, X_1, \ldots, X_n are *finitely* exchangeable instead of exchangeable. For the minor distinction between finite exchangeability and exchangeability see e.g., Tong ((1980), p. 96).