L₁-Statistical Procedures and Related Topics IMS Lecture Notes – Monograph Series (1997) Volume 31

Model checks in statistics: An innovation process approach

Winfried Stute

University of Giessen, Germany

Abstract: In this paper we study a class of Gaussian processes which typically appear as limits of marked empirical processes when composite models need to be checked. A transformation to their martingale part is derived which when applied to the empirical process gives rise to asymptotically distribution-free tests for composite models.

Key words: Model checks, innovation martingale, gaussian process.

AMS subject classification: 62G10, 62G30, 60G15.

1 Introduction

In this paper we will develop a general methodology for nonparametrically testing the goodness-of-fit of a parametric or a semiparametric model. To begin with the simplest example, assume one observes independent identically distributed (i.i.d.) random variables X_1, \ldots, X_n on the real line, from some unknown distribution function (d.f.) F. Furthermore, let $\mathcal{F} = \{F_{\theta} : \theta \in \Theta\}$ be a given family of distribution functions parametrized by some vector $\theta \in \Theta \subset \mathbb{R}^k$. To keep the discussion as simple as possible, we will assume that no nuisance parameters are present so that F_{θ} is uniquely determined by θ . The problem of how to test for the hypothesis

$$H_0: F \in \mathcal{F}$$

has attracted many researchers over the past decades. Most of the test statistics are certain functionals of the underlying empirical process. More