IMS Lecture Notes - Monograph Series (1996) Volume 29

LOCAL ROBUSTNESS AND INFLUENCE FOR CONTAMINATION CLASSES OF PRIOR DISTRIBUTIONS

BY ELÍAS MORENO, CARMEN MARTÍNEZ AND J. ANTONIO CANO University of Granada and University of Murcia

In the well-known ε -contamination class of prior distributions $\Gamma = \{\pi(\theta) : \pi(\theta) = (1-\varepsilon)\pi_0(\theta) + \varepsilon q(\theta), q \in Q\}$, ε represents the degree of uncertainty on the base prior $\pi_0(\theta)$ and Q the allowed class of contaminations. We argue here that the uncertainty we have on $\pi_0(\theta)$ typically is stronger on its tails than on its body. This idea is formalized through a more general $\varepsilon(\theta)$ -contamination class that might be seen as a local robustification of $\pi_0(\theta)$. When Q is defined by quantile constraints, the admissible classes of functions $\varepsilon(\theta)$ capable of maintaining the prior information for the resulting priors $\pi(\theta)$ are characterized and robust posterior analysis is carried out. Influence analysis is also considered. In this setting Fréchet derivatives are useful tools: they are easily interpreted and easily computed. Interactive robustness based on influence analysis is discussed.

1. Introduction. Let x be a set of data which will be assumed to arise from a density $f(\mathbf{x} \mid \boldsymbol{\theta})$, where $\boldsymbol{\theta}$ denotes unknown parameters in the space Θ . Robust Bayesian Analysis assumes uncertainty on the prior distribution $\pi(\boldsymbol{\theta})$ and models such an uncertainty by considering classes of priors for which robustness analyses are carried out. One of the most interesting classes is the contamination class

(1)
$$\Gamma = \{\pi(\theta) : \pi(\theta) = (1 - \varepsilon)\pi_0(\theta) + \varepsilon q(\theta), \ q \in Q\},\$$

which is proposed as follows. Some prior beliefs are established and a base prior $\pi_0(\theta)$ matching these requirements is elicited. A constant ε , $0 < \varepsilon < 1$, reflecting our degree of uncertainty on the functional form of $\pi_0(\theta)$, is specified. Finally, the class Q of all possible priors compatible with the prior beliefs is considered.

Prior beliefs are expressed by the probabilities of some sets C_i , $i \ge 1$, which form a partition of the parameter space Θ . Therefore, the prior should be any probability measure $\pi(\theta)$ such that $P^{\pi}(C_i) = \alpha_i$, $i \ge 1$, where α_i are known. The base prior $\pi_0(\theta)$ is then chosen such that $P^{\pi_0}(C_i) = \alpha_i$, $i \ge 1$, and the class Q is

(2)
$$Q = \{q(\theta) : P^q(C_i) = P^{\pi_0}(C_i), \ i \ge 1\}.$$

AMS Subject classification: Primary 62F15; secondary 62A15.

Key words: *e*-contamination class, Fréchet derivative, influence analysis, interactive robustness, local uncertainty.