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In this paper we characterize the operations on distribution functions that
are both derivable from functions on random variables defined on a common
probability space and induced pointwise by functions from [0, 1]” into [0,1]. We
specify the class of functions on random variables from which the operations
are derived and show that it includes all order statistics; and we give a descrip-
tion of the n-place functions from which these operations are induced pointwise.
In addition, by way of illustration, we show that mixtures, which are induced
pointwise, are not derivable.

1. Preliminary Concepts and Results. We shall denote by D the
space of proper one-dimensional distribution functions (d.f.’s), i.e. the space of
functions F : R := [~o00, +00] — [0, 1] that are nondecreasing, left-continuous
on R := (—00,+00) and such that

F(-00)=0= lim F(z) and F(4+00)=1= lir_lr_1 F(z).

~ An n-operation ¢ on D is a mapping from D" := D X D X --- X D into
D, i.e., a mapping that assigns a d.f. to every ordered collection of n d.f.’s. If
X; is a random variable (r.v.), we shall denote the distribution function of X;
by F;, Fx,, or df(X;), whichever is more convenient.

DEFINITION 1.1. An n-operation ¢ on D is said to be derivable from a func-
tion on r.v.’s if there exists a Borel measurable function V from R into R that
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