θ-expansions and the generalized Gauss map

Santanu Chakraborty
Reserve Bank of India
and
B.V. Rao
Indian Statistical Institute

Abstract

Motivated by problems in random continued fraction expansions, we study θ-expansions of numbers in $[0, \theta)$ where $0<\theta<1$. For such a number θ, we study the generalized Gauss transformation defined on $[0, \theta)$ as follows: $$
T(x)= \begin{cases}\frac{1}{x}-\theta\left[\frac{1}{\partial x}\right] & \text { if } \\ 0 & \text { if } \quad x=0\end{cases}
$$

One of the problems that concerns us is the symbolic dynamics of this map and existence of absolutely continuous invariant probability.

AMS (MSC) no: 37 E 05 ; 60 J 05

1 Introduction

Suppose that μ is a probability on the real line. Consider the following law of motion: If you are at x pick a number Z according to the law μ and move to $Z+x$. Continue the motion with independent choices at each stage. This is nothing but the familiar random walk. Suppose that by an error the law is transcribed as : move to $Z+\frac{1}{x}$, then what happens? To make sense of the problem, from now on we consider the state space to be $(0, \infty)$. Let μ be a probability on $[0, \infty)$ which drives the motion. If you are at x move to $Z+\frac{1}{x}$ where Z is chosen independent of the past and has law μ. This leads us to the Markov process

$$
X_{0}=x>0 ; \quad X_{n+1}=Z_{n+1}+\frac{1}{X_{n}} \quad \text { for } n \geq 0
$$

where ($Z_{n} ; n \geq 1$) is an i.i.d sequence of random variables, each having law μ. The purpose of the paper is to discuss this process.

2 Generalities

If μ is δ_{0}, the point mass at zero, then $X_{n}=x$ or $1 / x$ according as n is even or odd. Unless $x=1$ the process does not converge in distribution. For each $x>0$, $\frac{1}{2}\left(\delta_{x}+\delta_{1 / x}\right)$ is an invariant distribution for the process. In fact any invariant probability is a mixture of these. If $\mu=\delta_{a}$ where $a>0$, then the process starting at x is deterministic and is the sequence - in the usual notation of continued fractions $-[x ;],[a ; x],[a ; a, x], \cdots$ which converges to the number given by the continued fraction $[a ; a, a, \cdots]$. We leave the easy calculation involving convergents to the interested reader. The point mass at this point is the unique

