θ -expansions and the generalized Gauss map

Santanu Chakraborty Reserve Bank of India

and

B.V. Rao Indian Statistical Institute

Abstract

Motivated by problems in random continued fraction expansions, we study θ -expansions of numbers in $[0, \theta)$ where $0 < \theta < 1$. For such a number θ , we study the generalized Gauss transformation defined on $[0, \theta)$ as follows:

$$T(x) = \begin{cases} \frac{1}{x} - \theta[\frac{1}{\theta x}] & \text{if } x \neq 0, \\ 0 & \text{if } x = 0 \end{cases}$$

One of the problems that concerns us is the symbolic dynamics of this map and existence of absolutely continuous invariant probability.

AMS (MSC) no: 37 E 05; 60 J 05

1 Introduction

Suppose that μ is a probability on the real line. Consider the following law of motion: If you are at x pick a number Z according to the law μ and move to Z + x. Continue the motion with independent choices at each stage. This is nothing but the familiar random walk. Suppose that by an error the law is transcribed as : move to $Z + \frac{1}{x}$, then what happens? To make sense of the problem, from now on we consider the state space to be $(0, \infty)$. Let μ be a probability on $[0, \infty)$ which drives the motion. If you are at x move to $Z + \frac{1}{x}$ where Z is chosen independent of the past and has law μ . This leads us to the Markov process

$$X_0 = x > 0;$$
 $X_{n+1} = Z_{n+1} + \frac{1}{X_n}$ for $n \ge 0$

where $(Z_n; n \ge 1)$ is an i.i.d sequence of random variables, each having law μ . The purpose of the paper is to discuss this process.

2 Generalities

If μ is δ_0 , the point mass at zero, then $X_n = x$ or 1/x according as n is even or odd. Unless x = 1 the process does not converge in distribution. For each x > 0, $\frac{1}{2}(\delta_x + \delta_{1/x})$ is an invariant distribution for the process. In fact any invariant probability is a mixture of these. If $\mu = \delta_a$ where a > 0, then the process starting at x is deterministic and is the sequence – in the usual notation of continued fractions – [x;], [a;x], [a;a,x], \cdots which converges to the number given by the continued fraction $[a; a, a, \cdots]$. We leave the easy calculation involving convergents to the interested reader. The point mass at this point is the unique