Chapter 5

Lecture 16

Example 1(e). We have X_i iid $ae^{-b(x-\theta)^4}$, with a, b > 0 chosen so that this is a density and $\operatorname{Var}_{\theta}(X_i) = 1$. Then

$$\ell_{\theta}(s) = \varphi_{0}(s) \exp\Big\{b\Big[\Big(4\sum_{i=1}^{n} X_{i}^{3}\Big)\theta - 6\Big(\sum_{i=1}^{n} X_{i}^{2}\Big)\theta^{2} + 4\Big(\sum_{i=1}^{n} X_{i}\Big)\theta^{3}\Big] + A(\theta)\Big\},\$$

which is not a one-parameter exponential family. It is called a "curved exponential family".

Sufficient conditions for the Cramér-Rao and Bhattacharya inequalities

As usual, we have $(S, \mathcal{A}, P_{\theta}), \theta \in \Theta$, where Θ is an open subset of \mathbb{R}^1 . μ is a fixed measure on S and $dP_{\theta}(s) = \ell_{\theta}(s)d\mu(s)$.

Condition 1. $\ell_{\theta}(s) > 0$ and $\delta \mapsto \ell_{\delta}(s)$ has, for each $s \in S$, a continuous derivative $\delta \mapsto \ell'_{\delta}(s)$. Let

$$\gamma_{\theta}^{(1)}(s) = \frac{\ell_{\theta}'(s)}{\ell_{\theta}(s)} = L_{\theta}'(s).$$

Condition 2. Given any $\theta \in \Theta$, we may find an $\varepsilon = \varepsilon(\theta) > 0$ such that $E_{\theta}(m_{\theta}^2) < +\infty$, where

$$m_{ heta}(s) = \sup_{|\delta - heta| \leq arepsilon} |\gamma^{(1)}_{\delta}(s)|$$

- i.e., $m_{\theta} \in V_{\theta}$, which implies that $I(\theta) = E_{\theta}(\gamma_{\theta}^{(1)})^2 < +\infty$. Condition 3. $I(\theta) > 0$.

12E Exact statement of Cramér-Rao inequality: Under conditions 1–3 above, if U_g is non-empty, then g is differentiable and

$$\operatorname{Var}_{\theta}(t) \geq \frac{(g'(\theta))^2}{I(\theta)} \ \forall \theta \in \Theta, t \in U_g.$$