Chapter 1

Note on the notation: Throughout, Professor Bahadur used the symbols $\varphi(s)$, $\varphi_1(s), \varphi_2(s), \ldots$ to denote functions of the sample that are generally of little importance in the discussion of the likelihood. These functions often arise in his derivations without prior definition.

Lecture 1

Review of L^2 geometry

Let (S, \mathcal{A}, P) be a probability space. We call two functions f_1 and f_2 on S EQUIVA-LENT if and only if $P(f_1 = f_2) = 1$, and set

$$V = L^2(S, \mathcal{A}, P) := \left\{ f : f \text{ is measurable and } E(f^2) = \int_S f(s)^2 dP(s) < \infty \right\},$$

where we have identified equivalent functions. We may abbreviate $L^2(S, \mathcal{A}, P)$ to $L^2(P)$ or, if the probability space is understood, to just L^2 . For $f, g \in V$, we define $||f|| = +\sqrt{E(f^2)}$ and $(f,g) = E(f \cdot g)$, so that $||f||^2 = (f,f)$. Throughout this list f and g denote arbitrary (collections of equivalent) functions in V.

- 1. V is a real vector space.
- 2. (\cdot, \cdot) is an inner product on V i.e., a bilinear, symmetric and positive definite function.
- 3. CAUCHY-SCHWARZ INEQUALITY:

$$|(f,g)| \le ||f|| \cdot ||g||,$$

with equality if and only if f and g are linearly dependent.

Proof. Let x and y be real; then, by expanding $||\cdot||$ in terms of (\cdot, \cdot) , we find that

$$0 \le ||xf + yg||^{2} = x^{2}||f||^{2} + 2xy(f,g) + y^{2}||g||^{2},$$

from which the result follows immediately on letting x = ||g|| and y = ||f||. \Box