Institute of Mathematical Statistics

LECTURE NOTES — MONOGRAPH SERIES

PLUG-IN ESTIMATORS IN SEMIPARAMETRIC STOCHASTIC PROCESS MODELS

Ursula U. Müller Universität Bremen

Anton Schick¹ Binghamton University

Wolfgang Wefelmeyer Universität Siegen

Abstract

Consider a locally asymptotically normal semiparametric model with a real parameter ϑ and a possibly infinite-dimensional parameter F. We are interested in estimating a real-valued functional a(F). If \hat{a}_{ϑ} estimates a(F)for known ϑ , and $\hat{\vartheta}$ estimates ϑ , then the plug-in estimator $\hat{a}_{\hat{\vartheta}}$ estimates a(F) if ϑ is unknown. We show that $\hat{a}_{\hat{\vartheta}}$ is asymptotically linear and regular if \hat{a}_{ϑ} and $\hat{\vartheta}$ are, and calculate the influence function and the asymptotic variance of $\hat{a}_{\hat{\vartheta}}$. If a(F) can be estimated adaptively with respect to ϑ , then $\hat{a}_{\hat{\vartheta}}$ is efficient if \hat{a}_{ϑ} is efficient. If a(F) cannot be estimated adaptively, then for $\hat{a}_{\hat{\vartheta}}$ to be efficient, $\hat{\vartheta}$ must also be efficient. We illustrate the results with stochastic process models, in particular with time series models, and discuss extensions of the results.

Key Words: Empirical estimator, asymptotically linear estimator, influence function, regular estimator, Markov chain model, nonlinear regression, residual distribution, nonlinear autoregression, innovation distribution, stochastic equicontinuity, stochastic differentiability.

1 Introduction

Let $\overline{\mathcal{P}}_n = \{P_{n\vartheta F} : \vartheta \in \Theta, F \in \mathcal{F}\}$ denote a sequence of semiparametric models, with Θ one-dimensional and \mathcal{F} a possibly infinite-dimensional set. We are interested in estimating a real-valued functional a(F). For each ϑ

¹Research partially supported by NSF Grant DMS 0072174