The Almost Sure Number of Pairwise Sums for Certain Random Integer Subsets Considered by P. Erdös

Michael J. Klass*
Departments of Statistics and Mathematics
University of California

Abstract

Fix any $\lambda>0$ and let X_{1}, X_{2}, \ldots be independent and identically distributed $0-1$ valued random variables such that $$
P\left(X_{j}=1\right)=\min \left\{\sqrt{\frac{2 \lambda}{\pi} \frac{\ln j}{j}}, 1\right\}
$$

Let $G_{n}=\sum_{j=1}^{\lfloor n / 2\rfloor} X_{j} X_{n-j} . G_{n}$ is the number of times two numbers from the random set $S \equiv\left\{j: X_{j}=1\right\}$ add to n. We evaluate the almost sure limits $\liminf _{n \rightarrow \infty} \frac{G_{n}}{E G_{n}} \equiv c_{1}(\lambda)$ and $c_{2}(\lambda) \equiv \limsup _{n \rightarrow \infty} \frac{G_{n}}{E G_{n}}$, showing that $0 \leq c_{1}(\lambda)<1<c_{2}(\lambda)<\infty$.

Introduction

Around 1932 Sidon asked whether there exist positive integers $a_{1}<a_{2}<\ldots$ such that $f(n)>0$ for all n sufficiently large and yet $\lim _{n \rightarrow \infty} \frac{f(n)}{n^{\varepsilon}}=0$ for all $\varepsilon>0$, where

$$
\begin{equation*}
f(n)=\#\left\{i \geq 1: a_{i}+a_{j_{i}}=n \text { for some } j_{i} \geq i\right\} \tag{1}
\end{equation*}
$$

Fix any $\lambda>0$. Let X_{1}, X_{2}, \ldots be independent random variables taking only values zero and one, as determined by the probabilities

$$
\begin{equation*}
P\left(X_{j}=1\right)=\min \left\{\sqrt{\frac{2 \lambda}{\pi} \frac{\ln j}{j}}, 1\right\} \equiv P_{j} . \tag{2}
\end{equation*}
$$

*Supported in part by National Science Foundation Grant DMS 96-26236.

