The Almost Sure Number of Pairwise Sums for Certain Random Integer Subsets Considered by P. Erdös

Michael J. Klass*
Departments of Statistics and Mathematics
University of California

Abstract

Fix any $\lambda > 0$ and let X_1, X_2, \ldots be independent and identically distributed 0-1 valued random variables such that

$$P(X_j = 1) = \min \left\{ \sqrt{\frac{2\lambda}{\pi} \frac{\ln j}{j}}, 1 \right\}.$$

Let $G_n = \sum_{j=1}^{\lfloor n/2 \rfloor} X_j X_{n-j}$. G_n is the number of times two numbers from the random set $S \equiv \{j: X_j = 1\}$ add to n. We evaluate the almost sure limits $\liminf_{n \to \infty} \frac{G_n}{EG_n} \equiv c_1(\lambda)$ and $c_2(\lambda) \equiv \limsup_{n \to \infty} \frac{G_n}{EG_n}$, showing that $0 \le c_1(\lambda) < 1 < c_2(\lambda) < \infty$.

Introduction

Around 1932 Sidon asked whether there exist positive integers $a_1 < a_2 < \ldots$ such that f(n) > 0 for all n sufficiently large and yet $\lim_{n \to \infty} \frac{f(n)}{n^{\varepsilon}} = 0$ for all $\varepsilon > 0$, where

(1)
$$f(n) = \#\{i \ge 1 : a_i + a_{j_i} = n \text{ for some } j_i \ge i\}.$$

Fix any $\lambda > 0$. Let X_1, X_2, \ldots be independent random variables taking only values zero and one, as determined by the probabilities

(2)
$$P(X_j = 1) = \min \left\{ \sqrt{\frac{2\lambda}{\pi}} \frac{\ln j}{j}, 1 \right\} \equiv P_j.$$

^{*}Supported in part by National Science Foundation Grant DMS 96-26236.