Chapter 2

Likelihood, Estimation and Testing

2.1 Likelihood and log-likelihood.

In this and the following section, we review briefly the basic ideas and results of likelihood inference: details may be found in any standard mathematical statistics text for beginning graduate students. A vector of data random variables, \mathbf{Y} , whose value \mathbf{y} is observed, has one of a family of probability distributions $\{P_{\theta}; \theta \in \Theta\}$, indexed by a *parameter* θ in *parameter space* Θ . The goals of estimation are to make inferences about which P_{θ} gave rise to the observed \mathbf{y} , and to assess the uncertainty associated with this inference.

The likelihood is $L_{\mathbf{y}}(\theta) = P_{\theta}(\mathbf{y})$, a function of θ . The likelihood provides the connection between the data \mathbf{y} and the probability model P_{θ} . A statistic is a function of the data random variables \mathbf{Y} , an estimator $T = T(\mathbf{Y})$ is a statistic taking values in Θ , while the estimate is $T(\mathbf{y})$, the value taken by the estimator that is used to estimate θ .

For example, suppose Y_i , i = 1, ..., n are independent identically distributed Bernoulli random variables, $B(1,\theta)$, the indicators of success in n independent trials, each with success probability θ . Then $P_{\theta}(y) = \theta^y (1-\theta)^{1-y}$ (y = 0, 1) for each trial, and $L(\theta) = \prod_{i=1}^{n} (\theta^{y_i} (1-\theta)^{1-y_i})$. The log-likelihood is

(2.1)
$$\ell(\theta) = \log L(\theta) = (\sum_{1}^{n} y_i) \log(\theta) + (n - \sum_{1}^{n} y_i) \log(1 - \theta).$$

Note that the (log)-likelihood depends only on the value of $T = \sum_{i=1}^{n} Y_i$, the total number of successes, which has a binomial $B(n, \theta)$ distribution. The likelihood based on the binomial probability of the observed value t of T is

$$L(\theta) = P_{\theta}(T=t) = \frac{n!}{k!(n-k)!} \theta^{t} (1-\theta)^{n-t}$$

$$(2.2) \qquad \ell(\theta) = \log L(\theta) = \operatorname{const} + t \log(\theta) + (n-t) \log(1-\theta).$$