SECTION 3

Chaining

The main aim of the section is to derive a maximal inequality for the processes $\boldsymbol{\sigma} \cdot \mathbf{f}$, indexed by subsets of \mathbb{R}^n , in the form of an upper bound on the Ψ norm of $\sup_{\mathcal{F}} |\boldsymbol{\sigma} \cdot \mathbf{f}|$. [Remember that $\Psi(x) = \frac{1}{5} \exp(x^2)$.] First we need a bound for the individual variables.

(3.1) LEMMA. For each \mathbf{f} in \mathbb{R}^n , the random variable $\boldsymbol{\sigma} \cdot \mathbf{f}$ has subgaussian tails, with Orlicz norm $\|\boldsymbol{\sigma} \cdot \mathbf{f}\|_{\Psi}$ less than $2|\mathbf{f}|$.

PROOF. The argument has similarities to the randomization argument used in Section 2. Assume the probability space is a product space supporting independent N(0,1) distributed random variables g_1, \ldots, g_n , all of which are independent of the sign variables $\sigma_1, \ldots, \sigma_n$. The absolute value of each g_i has expected value

$$\gamma = \mathbb{P}|N(0,1)| = \sqrt{2/\pi}.$$

By Jensen's inequality,

$$\mathbb{P}_{\sigma} \exp\left(\sum_{i \leq n} \sigma_i f_i / C\right)^2 = \mathbb{P}_{\sigma} \exp\left(\sum_{i \leq n} \sigma_i f_i \mathbb{P}_g |g_i| / \gamma C\right)^2$$
$$\leq \mathbb{P}_{\sigma} \mathbb{P}_g \exp\left(\sum_{i \leq n} \sigma_i |g_i| f_i / \gamma C\right)^2.$$

The absolute value of any symmetric random variable is independent of its sign. In particular, under $\mathbb{P}_{\sigma} \otimes \mathbb{P}_{g}$ the products $\sigma_{1}|g_{1}|, \ldots, \sigma_{n}|g_{n}|$ are independent N(0, 1) random variables. The last expected value has the form $\mathbb{P}\exp(N(0, \tau^{2})^{2})$, where the variance is given by

$$\tau^2 = \sum_{i \le n} (f_i / \gamma C)^2 = |\mathbf{f}|^2 / \gamma^2 C^2.$$

Provided $\tau^2 < 1/2$, the expected value is finite and equals $(1-2|\mathbf{f}|^2/\gamma^2 C^2)^{-1}$. If we choose $C = 2|\mathbf{f}|$ this gives $\mathbb{P}\Psi(\boldsymbol{\sigma}\cdot\mathbf{f}/C) \leq 1$, as required. \Box