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4. GENERAL SADDLEPOINT APPROXIMATIONS

4.1. INTRODUCTION

In this chapter, we use the approximations obtained for the mean to get approximations
for more complicated statistics. The first section considers one-dimensional M-estimates

i.e. T, is the solution of _ ¥(z;;t) = 0. The estimate T}, is written locally as a mean
1

and the saddlepoint approximation for the mean is used. In section 4.3, we consider a
slightly different approach in that the moment generating function is approximated and a
saddlepoint approximation used. The technique is applied to approximating the density
of L-estimates in the next section. At this point, we turn to the problem for multivariate
M-estimates. Techniques are similar to those used for one-dimensional M-estimates. Finally
we modify the results to handle the case of regression using M-estimates. Throughout the
chapter, there are numerical results illustrating the accuracy of these approximations even
for small sample sizes.

In the cases considered in this chapter, our interest is to be able to say something
about the density of an estimate. Although asymptotic results are available in most cases,
we usually do not know whether these asymptotic distributions are good approximations
for small or moderate sample sizes. For instance there are several proposals for using “t-
statistics” based on robust location/scale estimates as a means for computing confidence
intervals. We then need to know whether this t-approximation works reasonably and if it
does, what are appropriate degrees of freedom. Some results in this direction are given in
section 4.5.b.

4.2. ONE-DIMENSIONAL M-ESTIMATORS

To begin, consider the problem of finding a saddlepoint approximation for the density
of a one-dimensional M-estimate. As developed by Huber (1964, 1967) M-estimates are
defined as the solution T}, of

n
> ¥(zit) =0 (4.1)
i=1
for observations z;,z3,---,z,. If the z;’s are independent observations from a density
f(z,0), then by setting ¥(z,0) = ﬁ-log f(z,0), T, becomes the maximum likelihood es-
timate of 6. In much of the work on robustness, M-estimates play a central role. However
the derivation of the exact density of such an estimate is usually intractable mathematically
and it becomes essential to have a good approximation in order to carry out inference.
Denote the density of T,, when the z;’s are independent observations from a density f
as fo(t). To approximate f,(t), we proceed by writing T,, as a mean up to a certain order
and then using the saddlepoint approximation to the mean as derived in section 3.2. The
approach follows closely that developed in Field (1982) for multivariate M-estimates which in
turn uses critically results on multivariate Edgeworth expansions in Bhattacharya and Ghosh
(1978). Field and Hampel (1982) give an alternate derivation for univariate M-estimates
based on the log-derivative density. In this section, the approximation is developed for a
one-dimensional M-estimate. The development for multivariate M-estimates is presented in
section 4.5 .
In the development of the approximation, the conjugate density (cf. (3.22)) will play



