Chapter 2. Basics of Representations and Characters

A. DEFINITIONS AND EXAMPLES.

We start with the notion of a group: a set G with an associative multiplication $s, t \rightarrow st$, an identity id, and inverses s^{-1} . A representation ρ of G assigns an invertible matrix $\rho(s)$ to each $s \in G$ in such a way that the matrix assigned to the product of two elements is the product of the matrices assigned to each element: $\rho(st) = \rho(s)\rho(t)$. This implies that $\rho(id) = I$, $\rho(s^{-1}) = \rho(s)^{-1}$. The matrices we work with are all invertible and are considered over the real or complex numbers. We thus regard ρ as a homomorphism from G to GL(V) — the linear maps on a vector space V. The dimension of V is denoted d_{ρ} and called the dimension of ρ .

If W is a subspace of V stable under G (i.e., $\rho(s)W \subset W$ for all $s \in G$), then ρ restricted to W gives a subrepresentation. Of course the zero subspace and the subspace W = V are trivial subrepresentations. If the representation ρ admits no non-trivial subrepresentation, then ρ is called *irreducible*. Before going on, let us consider an example.

Example. S_n the permutation group on n letters.

This is the group S_n of 1-1 mappings from a finite set into itself; we will use the notation $\begin{bmatrix} 1 & 2 & n \\ \pi(1) & \pi(2) & \cdots & \pi(n) \end{bmatrix}$. Here are three different representations. There are others.

- (a) The trivial representation is 1-dimensional. It assigns each permutation to the identity map $\rho(\pi)x = x$.
- (b) The alternating representation is also 1-dimensional. To define it, recall the sign of a permutation π is +1 if π can be written as a product or an even even # of factors

number of transpositions $\pi = (ab)(cd) \dots (ef)$. The sign of π is -1 if π can be written as an odd number of transpositions. Elementary books on group theory show that $\operatorname{sgn}(\pi)$ is well defined and that $\operatorname{sgn}(\pi_1\pi_2) = \operatorname{sgn}(\pi_1)\operatorname{sgn}(\pi_2)$. It follows that $x \to \operatorname{sgn}(\pi) \cdot x$ is a 1-dimensional representation.

(c) The permutation representation is an n-dimensional representation. To define it, consider the standard basis e_1, \ldots, e_n of \mathbb{R}^n . It is only necessary to define the linear map $\rho(\pi)$ on the basis vectors. Define $\rho(\pi)e_j = e_{\pi(j)}$. The matrix of a linear map L is defined by $L(e_j) = \Sigma L_{ij}e_i$. With this convention, $\rho(\pi)_{ij}$ is zero or one. It is one if and only if $\pi(j) = i$, so $\rho(\pi)_{ij} = \delta_{i\pi(j)}$. I will write permutations right to left. Thus $\pi_2 \pi_1$ means first perform π_1 and then perform π_2 .

We will also be using cycle notation for permutations, $(a_1a_2...a_k)$ means $a_1 \rightarrow a_2, a_2 \rightarrow a_3...a_k \rightarrow a_1$. Thus $(1\ 2)(2\ 3) = (1\ 2\ 3)$ (and not $(1\ 3\ 2)$).