LECTURE XIII. AN APPLICATION TO THE THEORY OF RANDOM GRAPHS

Consider a random graph G(n) on n vertices in which each possible edge is present with probability p, independently of all others. Let $W_{n,k}$ (also abbreviated W_n) be the number of isolated trees of order k in G(n). Conditions are given for W_n to have approximately a Poisson distribution. This lecture is based on a paper of Barbour (1982), who also gave conditions for a normal approximation to be valid.

I shall use essentially the same notation as Barbour. Denoting the set of vertices by {1,...,n}, I shall think of the random graph G(n) as a random subset of the set of all two-element subsets {i,j} of {1,...,n}. If {i,j} \in G(n) I shall say that {i,j} is an edge of the random graph G(n), which will be constructed by having the events {{i,j} \in G(n)} occur independently with common probability p. Let D_n be the set of all k-tuples i = (i_1 , i_2 ,..., i_k) of natural numbers with $1 \le i_1 < i_2 < ... < i_k \le n$. For each $i \in D_n$ let X_i = 1 if there is in G(n) an isolated tree spanning the vertices i_1 ,..., i_k , and otherwise let X_i = 0. A tree is, by definition, a connected graph containing no cycles, and it is isolated if G(n) has no edge with one vertex in the tree and one not in the tree. Then W_n, the number of isolated trees of order k in G(n) is given by

(1)
$$W_n = \sum_{i \in D_n} X_i.$$

The expectation λ of W_{n} is given by