LECTURE XIII . AN APPLICATION TO THE THEORY OF RANDOM GRAPHS

Consider a random graph G(n) on n vertices in which each possible edge is present with probability p, independently of all others. Let W_{n,k} (also abbreviated W_n) be the number of isolated trees of order k in $G(n)$. Conditions are given for W_n to have approximately a Poisson distribution. This lecture is based on a paper of Barbour (1982), who also gave conditions for a normal **is based on a paper of Barbour (1982), who also gave conditions for a normal**

I shall use essentially the same notation as Barbour. Denoting the set of vertices by $\{1,\ldots,n\}$, I shall think of the random graph $G(n)$ as a random subset of the set of all two-element subsets {i,j} of {l,...,n}. If $\{i,j\} \in G(n)$ I shall say that $\{i,j\}$ is an edge of the random graph $G(n)$, which will be constructed by having the events $\{i,j\} \in G(n)\}$ occur independently with common probability p. Let D_n be the set of all k-tuples i = (i_1, i_2, \ldots, i_k) of natural numbers with $l \leq i_1 < i_2 < \ldots < i_k \leq n$. For each i \in D_n let X_i = 1 if there is in G(n) an isolated tree spanning the vertices i_1, \ldots, i_k , and otherwise let $X_i = 0$. A tree is, by definition, a connected graph containing no cycles, and it is isolated if G(n) has no edge with one **vertex in the tree and one not in the tree.** Then W_n, the number of isolated **vertex in the tree and one not in the tree and one not in the tree and one in the number of isolated**

$$
W_n = \sum_{i \in D_n} X_i.
$$

The expectation λ of Wn is given by