CHAPTER 3. THE LIKELIHOOD PRINCIPLE AND GENERALIZATIONS

3.1 INTRODUCTION

The LP deals with situations in which X has a density $f_{\theta}(x)$ (with respect to some measure v) for all $\theta \in \Theta$. Of crucial importance is the *likeli-hood function for* θ *given* X, given by

$$(3.1.1) \qquad \qquad \ell_{x}(\theta) = f_{\theta}(x),$$

i.e., the density evaluated at the observed value X = x and considered as a function of θ . Often we will call $\ell_{X}(\theta)$ the *likelihood function for* θ or simply the *likelihood function*. The LP, which follows, is stated in a form suitable for easy initial understanding; certain implicit qualifications are discussed at the end of the section.

THE LIKELIHOOD PRINCIPLE. All the information about θ obtainable from an experiment is contained in the likelihood function for θ given X. Two likelihood functions for θ (from the same or different experiments) contain the same information about θ if they are proportional to one another.

It has been known since Fisher (1925, 1934) that the "random" likelihood function $\ell_{\chi}(\theta)$ is a minimal sufficient statistic for θ , and hence contains all information about θ from a classical viewpoint. The LP goes considerably farther, however, maintaining that only $\ell_{\chi}(\theta)$ for the actual observation X = x is relevant.