4. Functional Central Limit Theorems.

In the last section we have already mentioned Donsker's functional central limit theorem for the uniform empirical process $\alpha_n \equiv (\alpha_n(t))_{t \in [0,1]}$, where $\alpha_n(t) = n^{1/2}(U_n(t) - t), U_n(t)$ being the empirical df based on independent random variables η_i having uniform distribution on the sample space X = [0,1] with its Borel σ -algebra $\mathcal{B} = [0,1] \cap \mathcal{B}$.

In the setting of an empirical C-process $\beta_n \equiv (\beta_n(C))_{C \in C}$ the uniform empirical process α_n is a very special case taking $C = \{[0,t]: t \in [0,1]\}$ and identifying $\alpha_n(t)$ with $\beta_n(C) = n^{1/2}(\mu_n(C) - \mu(C))$ for C = [0,t], μ_n being the empirical measure based on η_1, \ldots, η_n and μ being the uniform distribution on [0,1]; note that $\mu_n(C) = U_n(t)$ and $\mu(C) = t$ for C = [0,t].

The present section is concerned with some extensions of Donsker's functional central limit theorem in its form (44)(ii) to more general situations.

FUNCTIONAL CENTRAL LIMIT THEOREMS FOR EMPIRICAL C-PROCESSES:

Let X = (X,B) be an arbitrary measurable space considered as a sample space for a given sequence ξ_1, ξ_2, \ldots of i.i.d. random elements in (X,B), the ξ_i 's being defined on some common p-space (Ω, F, \mathbb{P}) with law μ on B. If not stated otherwise we will consider the canonical model

$$(\Omega, F, \mathbb{P}) = (X^{\mathbb{N}}, \mathcal{B}_{\mathbb{N}}, \overset{\times}{\mathbb{N}} \mu)$$

with the $\xi,$'s being the coordinate projections of $X^{\rm I\!N}$ onto X.

Let $\mu_n(B) = \frac{1}{n} \sum_{i=1}^n 1_B(\xi_i), B \in \mathcal{B}$, be the empirical measure based on ξ_1, \dots, ξ_n .