1. Introduction and some structural properties of empirical measures.

Many standard procedures in statistics are based on a random sample x_1, \ldots, x_n of i.i.d. observations, i.e., it is assumed that observations (or measurements) occur as realizations (or values) $x_i = \xi_i(\omega)$ in some sample space X of a sequence of independent and identically distributed (i.i.d.) random elements ξ_1, \ldots, ξ_n defined on some basic probability space (p-space for short) (Ω, F, \mathbb{P}) ; here ξ is called a RANDOM ELEMENT in X whenever there exists a (Ω, F, \mathbb{P}) such that $\xi: \Omega \rightarrow X$ is F, B-measurable for an appropriate σ -algebra \mathcal{B} in X, in which case the law $\mu \equiv L{\xi}$ of ξ is a well defined p-measure on \mathcal{B} $(\mu(B) = \mathbb{P}(\{\omega \in \Omega: \xi(\omega) \in B\}) \equiv \mathbb{P}(\xi \in B)$ for short, $B \in \mathcal{B}$).

In classical situations, the sample space X is usually the k-dimensional Euclidean space \mathbb{R}^k , $k \ge 1$, with the Borel σ -algebra $\boldsymbol{\mathcal{B}}_k$. In the present notes, if not stated otherwise, the sample space X is always an arbitrary measurable space (X,B).

Given then i.i.d. random elements ξ_i in X = (X,B) with (common) law μ on B we can associate with each (sample size) n the so-called EMPIRICAL MEASURE

(1)
$$\mu_n := \frac{1}{n} \left(\varepsilon_{\xi_1} + \ldots + \varepsilon_{\xi_n} \right) \text{ on } \mathcal{B},$$

where
$$\varepsilon_{\mathbf{x}}(\mathbf{B}) := \begin{cases} 1 \text{ if } \mathbf{x} \in \mathbf{B} \\ 0 \text{ if } \mathbf{x} \notin \mathbf{B} \end{cases}$$

In other words, given the first n observations $x_i = \xi_i(\omega)$, i=1,...,n, $\mu_n(B) \equiv \mu_n(B,\omega)$ is the average number of the first n x_i 's falling into B. (The notation $\mu_n(\cdot,\omega)$ should call attention to the fact that μ_n is a random p-measure on B.)

 μ_n may be viewed as the statistical picture of μ and we are thus interested in the connection between μ_n and $\mu,$ especially when n tends to infinity.