ESSAY IV. APPLICATION OF THE PREDICTION PROCESS TO MARTINGALES

0. INTRODUCTION.

Let X(t), $t \ge 0$, be a right-continuous supermartingale relative to an increasing family of σ -fields G_t^* on some probability space (Ω^*, F^*, P^*) . We assume that the G_t^* are countably generated for each t. It is then easy, by using indicator functions of generators of G_t^* , to construct a sequence $X_{2(n+1)}(t)$, $1 \le n$, of real-valued processes such that $\{X(s), (X_{2(n+1)}(s)), s \le t\}$ generates G_t^* for each rational t. We can now transfer both process and probability to the canonical space Ω of Essay 1. We simply set $P\{w_{2n-1}(s) = 0$, all $s \ge 0$ and $n \ge 1\} = 1$, and for $S \in X_{t>0} \overline{B}_{\infty}$ (see Essay 1, Section 1 for notation)

$$P\{(w_{2n}(\cdot)) \in S\} = P^{*}\{(X(\cdot), X_{2(n+1)}(\cdot)) \in S\}.$$

Then we obtain a canonically defined process $X_t((w_n)) = w_2(t)$ which is a supermartingale with respect to P and the σ -fields G_t° of Essay 1. In the present work, we let X_t denote this process (rather than the sequential process (w_{2n})), and we drop the odd coordinates from the notation (i.e., we discard the set of probability 0 where they are nonzero). Thus we do not allow any "hidden information": $F_t^{\circ} = G_t^{\circ}$. By a well-known convergence theorem we have

$$E(X_{s+t}|F_{t+}^{O}) = \lim_{r \to t+} E(X_{s+t}|F_{r}^{O})$$

$$\leq \lim_{r \to t+} X_{r}$$

$$= X_{t} .$$

Hence X_t is a supermartingale relative to $F^o_{t+},$ and we can connect it with its prediction process z^P_{+} .

As in Essay 1, the method requires that P be treated as a variable. In the present work we are concerned initially with three familiar classes of P on (Ω, F°) , as follows.