
ESSAY IV. APPLICATION OF THE PREDICTION PROCESS TO MARTINGALES

0. INTRODUCTION.

Let X(t) , t > 0, be a rights-continuous supermartingale relative to

an increasing family of σ-fields G on some probability space
it it it it

(Ω ,F ,p ) . we assume that the G are countably generated for each t .
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It is then easy, by using indicator functions of generators of G
fc
, to

construct a sequence
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 real-valued processes such

that {x(s),(X . (s)),s<t} generates G for each rational t. We can now

transfer both process and probability to the canonical space Ω of Essay 1.

We simply set P { W .(s) = 0 , all s > 0 and n > 1} = 1, and for
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 B^ (see Essay 1, Section 1 for notation)
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Then we obtain a canonically defined process X ((w )) = w
o
(t) which is a
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supermartingale with respect to P and the σ-fields G° of Essay 1.

In the present work, we let X denote this process (rather than the

sequential process (
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 coordinates from the

notation (i.e., we discard the set of probability 0 where they are non-

zero) . Thus we do not allow any "hidden information": ?? = G° . By a

well-known convergence theorem we have
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Hence X^ is a supermartingale relative to F° , and we can connect it

with its prediction process Z

As in Essay 1, the method requires that P be treated as a variable.

In the present work we are concerned initially with three familiar classes

of P on (Ω,F°), as follows.


