IMS Lecture Notes - Monograph Series (1994) Volume 24

INVARIANT MEASURES ON STIEFEL MANIFOLDS WITH APPLICATIONS TO MULTIVARIATE ANALYSIS

BY YASUKO CHIKUSE

Kagawa University

Let $V_{k,m}$ denote the Stiefel manifold which consists of $m \times k(m \ge k)$ matrices X such that $X'X = I_k$. We present decompositions of a random matrix X and then of the invariant measure on $V_{k,m}$, relative to a fixed subspace ν in \mathbb{R}^m , for all possible four cases to be considered according to the sizes of k, m, and the dimension of ν . The results are utilized for deriving the distributions of the canonical correlation coefficients between two random matrices of "general" dimensions, and for discussing high dimensional limit theorems (as $m \to \infty$) on $V_{k,m}$.

1. Introduction. We consider the Stiefel manifold $V_{k,m}$ which consists of $m \times k (m \ge k)$ matrices X such that $X'X = I_k$, the $k \times k$ identity matrix. For k = m, the Stiefel manifold is the orthogonal group O(m). An invariant measure (i.m.) on $V_{k,m}$ is given by the differential form (d.f.)

$$(X'dX) = \bigwedge_{i < j}^{k} \boldsymbol{x}_{j}' d\boldsymbol{x}_{i} \bigwedge_{j=1}^{m-k} \bigwedge_{i=1}^{k} \boldsymbol{b}_{j}' d\boldsymbol{x}_{i}, \qquad (1.1)$$

in terms of the exterior products (\wedge) , where we choose an $m \times (m-k)$ matrix B such that $[X : B] = (\mathbf{x}_1 \cdots \mathbf{x}_k : \mathbf{b}_1 \cdots \mathbf{b}_{m-k}) \in O(m)$ and $d\mathbf{x}$ is an $m \times 1$ vector of differentials. The volume of $V_{k,m}$ is given by $w(k,m) = 2^k \pi^{km/2} / \Gamma_k(m/2)$, where $\Gamma_k(a) = \pi^{k(k-1)/4} \prod_{i=1}^k \Gamma(a - (i-1)/2)$, and the normalized i.m. of unit mass on $V_{k,m}$ is denoted by [dX](=(X'dX)/w(k,m)).

The Grassmann manifold $G_{k,m-k}$ consists of k-planes, i.e., k-dimensional linear subspaces in \mathbb{R}^m . For $X \in V_{k,m}$, we can write X = GQ; that is, X in $V_{\kappa,m}$ is determined uniquely by the specification of the k-plane, i.e., the "reference" matrix G in $G_{\kappa,m-k}$ and the orientation $Q \in O(k)$ of G. An i.m.

AMS 1991 Subject Classifications: Primary 15A23, 58C35, 62H11; secondary 62H10, 62H20.

Key words and phrases: Canonical correlation coefficients, decompositions of random matrices, Grassmann manifolds, matrix-variate normal distributions, Stiefel manifolds.