IMS Lecture Notes - Monograph Series (1994) Volume 24

UNLINKING THEOREM FOR SYMMETRIC CONVEX FUNCTIONS†

BY S. K. BHANDARI AND S. DASGUPTA

Indian Statistical Institute, Calcutta, India

In this paper the authors have proved the following result: Suppose U and V are two centrally symmetric convex functions of X, when X is an $n \times 1$ random vector distributed as $N(0, I_n)$ such that Cov(U(X), V(X)) = 0. Then, under certain conditions, there exists an orthogonal transformation Y = LX such that U and V can be expressed as functions of two different sets of components of Y. This provides a partial answer to Linnik's question on unlinking two given functions of X.

1. Introduction. Kagan et al. [1] have considered the following problem. let X be an $n \times 1$ random vector distributed as $N(0, I_n)$. Suppose P(X) and Q(X) are two independently distributed polynomial functions. Is it possible to find an orthogonal transformation Y = LX such that P and Q could be expressed as functions of different sets of components of Y? If the answer to this question is in the affirmative, then the functions P and Q are said to be unlinked. Partial answers to this question are given in Chapter II of [1].

We have shown in this paper that two statistics U(X) and V(X) could be unlinked when both U and V are centrally symmetric convex functions and Cov(U(X), V(X)) = 0 under certain conditions on U and V. Our result depends on the validity of a probability inequality given in lemma 3.

2. Preliminary Results.

LEMMA 1. Let g be a convex function on \mathbb{R} to \mathbb{R} . Suppose there exists λ_1, λ_2 in \mathbb{R} such that $g(\lambda_1) \neq g(\lambda_2)$. Then at least one of the following holds.

(a) There exists λ_0 such that g(u) < g(v) for $\lambda_0 \leq u < v$ and $g(\lambda) \to \infty$ as $\lambda \to \infty$.

(b) There exists λ_0 such that g(u) < g(v) for $v < u \le \lambda_0$ and $g(\lambda) \to +\infty$ as $\lambda \to -\infty$.

† Research supported by Australian Research Council Grant A6 8931380

AMS 1980 Subject Classifications: Primary 62H10, Secondary 52A20.

Key words and phrases: Convex symmetric functions and Linnik's unlinking proposition.