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Using machinery developed earlier for the covariances of symmetric

statistics, we consider various aspects of the bias of the jackknife estimate

of variance.

l Introduction

The jackknife estimate of variance (Quenouille (1949, 1956), Tukey
(1958)) can be described as follows. Given a symmetric function h of iid ar-
guments Xχ,X2, ,^m, it is desired to estimate σ2 = Var h. With an aug-
mented supply Xi,X2> >^n where n = ra+1, or more generally n > m+1,
one forms Q = p " 1 ) " 1 Σ\iμm[h(Xi) - W where h = ft)"1 Σ | / | = m h{Xj)
and Xι = ( X ^ , ^ , . . .,X»m) with / = {ii,*2,.-.,*»*}. Several papers
(Efron and Stein (1981), Karlin and Rinott (1982), Bhargava (1983), Vi-
tale (1984), Steele (1986)) have considered the bias relation

(1.1) σ2 < EQ,

which has come to be known as the Efron-Stein inequality. Our purpose
here is to investigate aspects of (1.1) including (i) an alternate proof with
variant forms of the condition for equality, (ii) a sharpening, (iii) a comple-
mentary upper bound, and (iv) a consideration of Q as an estimator which
is "contaminated" by estimators of other parameters.

2. Preliminaries

If Xi, X2,..., Xn

 a r e ϋd random variables and h is a symmetric function
of m of them with Eh2 < 00, then we set

rk = Cov[h(Xi),h(Xj)]
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