ORDERINGS ARISING FROM EXPECTED EXTREMES, WITH AN APPLICATION

By PETER J. DOWNEY and ROBERT S. MAIER¹

University of Arizona

We bound the expected maximum order statistics $\{EX_{(n)}\}_{n=1}^{\infty}$ of a d.f. F_X both above and below. Our results have an interpretation in terms of stochastic orderings \leq_e and \leq_{we} defined as follows: $F_X \leq_e F_Y$ iff $EX_{(n)} \leq EY_{(n)}$ for all n, and $F_X \leq_{we} F_Y$ iff $EX_{(n)} \leq EY_{(n)}$ for n sufficiently large. We apply our results on \leq_{we} to the end-to-end delay in a resequencing $M/G/\infty$ queue.

1. Introduction

If X_1, \ldots, X_n are i.i.d. random variables with parent distribution F_X , let $X_{(n)}$ denote the maximum order statistic $\max(X_1, \ldots, X_n)$. We are interested in the case when F_X has nonnegative lower endpoint, and upper endpoint $+\infty$. In this case we wish to control the behavior of $X_{(n)}$ as $n \to \infty$; in particular, to bound it above and below in expectation or in related senses. The bounds should be as free of assumptions on the distribution F_X as possible.

Our original motivation for investigating this question was the study of stochastic models arising in computing (Downey and Maier (1990)). There the X_i are interpreted as time delays. (See Section 3 for a typical example, a resequencing $M/G/\infty$ queueing model.) But our results have a more general interpretation, in terms of stochastic inequalities. If a relation \leq_e and its weak counterpart \leq_{we} are defined on the class of finite-mean distributions of nonnegative r.v.'s by

(1)
$$F_X \leq_e F_Y \iff EX_{(n)} \leq EY_{(n)}, n \geq 1$$

(2)
$$F_X \leq_{we} F_Y \iff EX_{(n)} \leq EY_{(n)}, \quad n \text{ suff. large}$$

then our results have implications for \leq_e and \leq_{we} .

The orderings \leq_e and \leq_{we} are very natural, but seem never to have been studied before. Chan (1967) showed that a distribution is uniquely

¹Partially supported by National Science Foundation Grant NCR-9016211.

AMS 1991 subject classifications. Primary 60G70; secondary 60E05, 60K25.

Key words and phrases. Extreme order statistics, stochastic orderings, stochastic inequalities, resequencing delay, heavy traffic limit.