UNIFORM CONVERGENCE OF MARTINGALES IN THE ONE-DIMENSIONAL BRANCHING RANDOM WALK

J.D. Biggins The University of Sheffield

Abstract

In the supercritical branching random walk an initial person has children whose positions are given by a point process $Z^{(1)}$. Each of these then has children in the same way, with the positions of children in each family, relative to their parent's, being given by independent copies of $Z^{(1)}$, and so on. For any value of its argument, λ , the Laplace transform of the point process of nth generation people, normalized by its expected value, is a martingale, the usual branching process martingale being a special case. Here it is shown that under certain conditions these martingales converge uniformly in λ , almost surely and in mean. A consequence of this result is that the limit is, in an appropriate region, analytic in λ .

1. Introduction. This paper considers the one dimensional supercritical branching random walk. The process starts with a single initial ancestor at the origin. She has children, forming the first generation, with their positions on the real line, R, being given by a point process $Z^{(1)}$. Each of these children then has offspring in a similar way, with the positions of each new family relative to their parent being given by independent copies of $Z^{(1)}$. This gives the point process of second generation individuals, denoted by $Z^{(2)}$. Subsequent generations are formed similarly, yielding $Z^{(n)}$ as the nth generation point process. Let $\{Z_r^{(n)}: r\}$ be an enumeration of the positions of the nth generation people.

Let μ by the intensity measure of $Z^{(1)}$ then, as is well known, μ^{n*} (the n-fold convolution of μ) is the intensity measure of $Z^{(n)}$. As the process is supercritical we have $\mu(R) > 1$. Let $m(\lambda)$ be the Laplace transform of μ . Then

$$m(\lambda) = \int e^{-\lambda x} \mu(dx)$$
$$= E \int e^{-\lambda x} Z^{(1)}(dx)$$
$$= E \sum_{r} e^{-\lambda z_{r}^{(1)}}$$

and hence