A CONSTRUCTION FOR PROCESSES WITH HISTORY-DEPENDENT TRANSITION INTENSITIES

P. Whittle University of Cambridge

Summary

At the Sheffield meeting in honour of Joe Gani I presented the material of Whittle (1990); this was essentially Theorem 1 below and applications of it in network contexts. In the ensuing discussion John Bather raised an interesting point, which I now pursue.

1. Introduction. Suppose that a continuous-time Markov process has state variable x and infinitesmal generator T. Its equilibrium density $\pi(x)$ relative to a suitable measure μ then satisfies $T'\pi = 0$, where T' is the operator adjoint to T in that $\int (\pi T f) \mu (dx) = \int (fT'\pi) \mu (dx)$ for functions $\pi(x)$, f(x). Consider now a family of such processes parametrised by a vector $v = \{v_j\}$ for which the generator has the form

$$T(\mathbf{v}) = \sum_{n} \mathbf{v}_{j} T_{j} \tag{1}$$

Here the T_j are a set of fixed generators and v_j a set of variable parameters, scalar and non-negative. One can regard T_j as the generator of transitions by a particular mode (the jth mode); these different modes being weighted differently as we vary the parameters v_j . We shall refer to the vector $v = \{v_j\}$ as the <u>rate vector</u>; its essential property is that it enters linearly into the generator.

Let the family of processes generated as v varies in some given set N be denoted F. Let us also suppose that the equilibrium density $\pi(x|v)$ of the process with intensity (1) is unique and known, for all v in N. Note that prescription (1) includes also the non-homgeneous case

$$T(\mathbf{v}) = T_0 + \sum_{j \neq 0} \mathbf{v}_j T_j$$
⁽²⁾

This corresponds to the case when $v_0 \equiv 1$ for v in N.

Consider now the mixed density

$$\tilde{\pi}(x) = \int \pi(x|v) \phi(dv)$$
(3)