L₁-Statistical Procedures and Related Topics IMS Lecture Notes – Monograph Series (1997) Volume 31

Some limit theory for L_1 -estimators in autoregressive models under general conditions

Keith Knight

University of Toronto, Ontario, Canada

Abstract: It is well-known that L_1 -estimators of autogressive parameters are asymptotically Normal if the distribution function of the errors, F(x), has $F'(0) = \lambda > 0$. In this paper, we derive limiting distributions of L_1 -estimators under more general assumptions on F. Second-order representations are also derived.

Key words: Autoregressive processes, limiting destributions, Bahadur-Kiefer theorems.

AMS subject classification: 62F12, 62M10, 60F05.

1 Introduction

 L_1 estimation provides a somewhat robust alternative to least squares estimation for autoregressive models. Define a *p*-th order autoregressive (AR(*p*)) process

$$Y_t = \phi_0 + \phi_1 Y_{t-1} + \dots + \phi_p Y_{t-p} + \varepsilon_t \tag{1}$$

where $\{\varepsilon_t\}$ are independent, identically distributed (i.i.d.) random variables such that (a) $E(\varepsilon_t^2) < \infty$; (b) ε_t has median 0; (c) $F(x) = P(\varepsilon_t \le x)$ is continuous at x = 0.

We will assume that the process $\{Y_t\}$ is stationary; for this, we require that

$$\sum_{k=1}^{p} \phi_k z^k \neq 1$$

for all complex z with modulus $|z| \leq 1$. Throughout this paper, we will