A PATHWISE APPROACH TO DYNKIN GAMES*

IOANNIS KARATZAS Columbia University

Abstract

We reduce the classical discrete-time game of optimal stopping between two players, known as "Dynkin game", to a pathwise (deterministic) game of timing, by addition of a suitable non-adapted compensator (λ_n) to the payoff. This compensator satisfies $I\!\!E(\lambda_n | \mathcal{F}_n) \equiv 0$, where \mathcal{F}_n is the information available to the players at time t = n, and $I\!\!E$ denotes expectation with respect to the underlying probability measure $I\!\!P$; the compensator also enforces the non-anticipativity constraint that the strategies of both players be stopping times of (\mathcal{F}_n) . A pair of such stopping times is identified, which leads to a saddle-point for each of these games; and it is shown that the value V of the stochastic game is obtained by "averaging out" the value $W(\omega)$ of the pathwise game: $V = \int_{\Omega} W(\omega) I\!\!P(d\omega)$.

1. Introduction and Summary. We present a simple approach to the discrete-time stochastic game of optimal stopping (or timing) known as "Dynkin game" (Dynkin & Yushkevich (1968)), with payoff from player \mathbf{A} to player \mathbf{B} equal to

(1.1)
$$\mathcal{R}(\sigma,\tau) = U_{\sigma} \mathbb{1}_{\{\sigma < \tau\}} + L_{\tau} \mathbb{1}_{\{\tau < T, \tau \le \sigma\}} + \xi \mathbb{1}_{\{\sigma = \tau = T\}}.$$

Here $U_n \geq L_n(n\epsilon \mathbb{N}_0)$ are integrable random sequences, adapted to the filtration $\mathbb{F} = \{\mathcal{F}_n, n\epsilon \mathbb{N}_0\}; \sigma$ and τ are stopping times of \mathbb{F} with values in $\{0, 1, \ldots, T\}$, at the disposal of players **A** and **B**, respectively; $T \leq \infty$ is the "horizon" of the game; ξ is an integrable random variable; and

(1.2)
$$\overline{V} \stackrel{\Delta}{=} \inf_{\sigma} \sup_{\tau} \mathbb{E}\mathcal{R}(\sigma, \tau), \qquad \underline{V} \stackrel{\Delta}{=} \sup_{\tau} \inf_{\sigma} \mathbb{E}\mathcal{R}(\sigma, \tau)$$

are the upper- and lower- values, respectively, of the game. Notice that in the infinite-horizon case $(T = \infty)$ we are allowing stopping times to be extended-valued, i.e., to take the value $+\infty$.

Under reasonably mild conditions, we show that this game has value $V = \overline{V} = \underline{V}$, as well as a saddle-point of stopping times $(\hat{\sigma}, \hat{\tau})$, by looking

^{*} Work supported in part by the U.S. Army Research Office, under Grant DAAH-04-95-1-0528.