PROXIMITY OF PROBABILITY MEASURES WITH COMMON MARGINALS IN A FINITE NUMBER OF DIRECTIONS

BY L. B. KLEBANOV^{*} AND S. T. RACHEV[†] Institute of Mathematical Geology, St. Petersburg University of California, Santa Barbara

We provide estimates of the closeness between probability measures defined on \mathbb{R}^n which have the same marginals in a finite number of arbitrary directions. Our estimates show that the probability laws get closer in the λ -metric which metrizes the weak topology when the number of coinciding marginals increases. Our results offer a solution to the computer tomography paradox stated in Gutmann, Kemperman, Reeds, and Shepp (1991).

1. Introduction and Statement of the Problem. Let Q_1 and Q_2 be a pair of probabilities, i.e. probability measures defined on the Borel σ field of $I\!\!R$. Lorentz (1949) gave criteria for the existence of a probability density function $q(\cdot)$ on \mathbb{R}^2 taking only two values, 0 or 1, and having Q_1 and Q_2 as marginals. Kellerer (1961) generalized this result, obtaining the necessary and sufficient conditions for the existence of a density $f(\cdot)$ on \mathbb{R}^2 which satisfies the inequalities $0 \le f(\cdot) \le 1$, and has Q_1 and Q_2 as marginals (see also Strassen (1965) and Jacobs (1978)). Fishburn et al. (1990) were able to show that Kellerer's and Lorentz's conditions are equivalent, i.e. for any density $f(\cdot), 0 < f < 1$, on \mathbb{R}^2 there exists a density $g(\cdot)$ taking the values 0 and 1 only, which has the same marginals. In general, similar results hold for probability densities on \mathbb{R}^m , $m \geq 2$, when the (m-1)-dimensional marginals are prescribed. A considerably stronger result was established by Gutmann et al. (1991). This is that, for any probability density $f(\cdot), 0 \leq f \leq 1$, on \mathbb{R}^m and for any finite number of directions, there exists a probability density $g(\cdot)$ taking the values 0, 1 only, which has the same marginals as $f(\cdot)$ in the chosen directions. It follows that densities having the same marginals in a finite number of arbitrary directions may differ considerably in the uniform

^{*} Research partly supported by the Russian Foundation of Fundamental Investigation Grant 93-011-1959.

[†] Research partly supported by grants from NSF DMS-9103451 and NATO CRG-900798.

AMS 1991 Subject Classification: Primary 60A10; Secondary 60E10

Key words and phrases: Probability measures with fixed marginals, computer tomography.