Chapter 3

Stochastic integrals and martingales in Hilbert and conuclear spaces

From now on we shall be concentrating on two kinds of infinite dimensional spaces: a separable Hilbert space H and a conuclear space Φ' , the strong dual of a CHNS Φ . Our aim in the present chapter is twofold: (1) To define martingales taking values in H and Φ' respectively.

While the study of such martingales (particularly *H*-valued martingales) is of importance in the general theory (see e.g. the books of Métivier [38] and da Prato and Zabczyk [45]), we confine our attention to discussing only those properties which are relevant to the theory of *H* or Φ' -valued SDE's.

(2) To introduce the definitions and study the basic properties of stochastic integrals taking values in H and Φ' . In contrast to finite dimensional stochastic calculus, we have three interested Brownian motions to consider: cylindrical Brownian motion, H-valued Brownian motion and Φ' -valued Brownian motion. We shall also define stochastic integrals with respect to a Poisson random measure.

We assume throughout that (Ω, \mathcal{F}, P) is a complete probability space with a right continuous filtration $\{\mathcal{F}_t\}_{t\geq 0}$. This chapter is organized as follows: After discussing some general properties of *H*-valued and Φ' -valued martingales, we introduce *H*-cylindrical Brownian motion (*H*-c.B.m), *H*valued Brownian motion and Φ' -valued Wiener process. Then the stochastic integrals with respect to these processes will be defined and a representation theorem will be derived for *H*-valued and Φ' -valued continuous squareintegrable martingales. Finally we define the stochastic integral with respect to Poisson random measure and give conditions for a Φ' -valued martingale to be represented as a stochastic integral with respect to a Poisson random measure. The two representation theorems will play important roles