DERIVATIVE IN THE MEAN OF A DENSITY AND STATISTICAL APPLICATIONS

J. JUREČKOVÁ Charles University X. MILHAUD Université Paul Sabatier

In the parametric model $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ with *p*-dimensional parameter θ , such that P_{θ} are mutually absolutely continuous with densities differentiable in the mean, we prove an identity transforming the derivative in the mean of the likelihood ratio in \mathcal{P} into the derivative in the mean of a general statistic. This identity makes possible, among others, to approximate the expectation (or other moments) of a statistic, locally in a neighborhood of θ_0 and non-asymptotically under a finite number of observations. This in turn provides the local power of a general test of the simple hypothesis $\mathbf{H}_0: \theta = \theta_0$. Using these results, we show that the classical χ^2 -test is the locally most powerful invariant test for the hypothesis of balanced multinomial trials.

1. Introduction

Consider the parametric model $(\mathcal{X}, \mathcal{B}, \mathcal{P})$, where $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ is a family of probability distributions on \mathcal{B} with Θ being an open subset of \mathbb{R}^{p} . Assume that the members of the family \mathcal{P} are mutually absolutely continuous with square roots of densities differentiable in quadratic mean. More precisely, we impose the following conditions on \mathcal{P} :

- **A.1** The probabilities $P_{\theta}, \theta \in \Theta$ are mutually absolutely continuous. Denote $f_{\theta}(\cdot) = dP_{\theta}/dP_{\theta_0}$ the density of P_{θ} with respect to $P_{\theta_0}, \theta \in \Theta$, with a fixed $\theta_0 \in \Theta$.
- **A.2** The mapping $\theta^* \mapsto f_{\theta^*}/f_{\theta}$ is P_{θ} -differentiable in the mean for all $\theta, \theta^* \in \Theta$ with derivative $\mathbf{l}(\cdot, \theta) = (\ell_1(\cdot, \theta), \dots, \ell_p(\cdot, \theta))'$ such that $\mathbb{E}_{\theta} \| \mathbf{l}(\cdot, \theta) \|^2 < \infty$ if there exists a random vector $\mathbf{l}(\cdot, \theta)$ satisfying

(1.1)
$$\mathbb{E}_{\theta}\left\{\sum_{k=1}^{p}\left|\frac{1}{h_{k}}\left(\frac{f_{\theta+\mathbf{h}}}{f_{\theta}}-1\right)-\ell_{k}(\cdot,\theta)\right|\right\}\to 0 \text{ as } \mathbf{h}\to\mathbf{0}.$$

Then, obviously

(1.2)
$$\mathbb{E}_{\theta}(\mathbf{l}(\cdot,\theta)) = \lim_{\mathbf{h}\to 0} \mathbb{E}_{\theta}\left\{\frac{1}{|\mathbf{h}|}\left(\frac{f_{\theta+h}}{f_{\theta}} - 1\right)\right\} \equiv 0.$$

Keywords and phrases: differentiability in the mean; differentiability in quadratic mean; local power of the test; locally optimal rank test; multinomial distribution; Rao score test; score function; χ^2 test.