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Abstract

This paper presents some general formulas for random partitions of a finite
set derived by Kingman's model of random sampling from an interval partition
generated by subintervals whose lengths are the points of a Poisson point pro-
cess. These lengths can be also interpreted as the jumps of a subordinator, that is
an increasing process with stationary independent increments. Examples include
the two-parameter family of Poisson-Dirichlet models derived from the Poisson
process of jumps of a stable subordinator. Applications are made to the random
partition generated by the lengths of excursions of a Brownian motion or Brown-
ian bridge conditioned on its local time at zero.

Keywords: exchangeable; stable; subordinator; Poisson-Dirichlet; distribution

1 Introduction

This paper presents some general formulas for random partitions of a finite set de-

rived by Kingman's model of random sampling from an interval partition generated

by subintervals whose lengths are the points of a Poisson point process. Instances and

variants of this model have found applications in the diverse fields of population genet-

ics [17, 19], combinatorics [4, 48], Bayesian statistics [23], ecology [15, 37], statistical

physics [11, 12, 13, 53, 55], and computer science [25].

Section 2 recalls some general results for partitions obtained by sampling from a

random discrete distribution. These results are then applied in Section 3 to the Poisson-

Kingman model. Section 4 discusses three basic operations on Poisson-Kingman mod-

els: scaling, exponential tilting, and deletion of classes. Section 5 then develops for-

mulas for specific examples of Poisson-Kingman models. Section 6 recalls the two-

parameter family of Poisson-Dirichlet models derived in [50] from the Poisson process

of jumps of a stable(α) subordinator for 0 < α < 1. Section 7 reviews some results

of [41, 46, 49, 50] relating the two-parameter family to the lengths of excursions of a

Markov process whose zero set is the range of a stable subordinator of index α. Section

8 provides further detail in the case α = j which corresponds to partitioning a time

interval by the lengths of excursions of a Brownian motion. As shown in [2, 3], it is

this stable(^) model which governs the asymptotic distribution of partitions derived

in various ways from random forests, random mappings, and the additive coalescent.

See also [5, 9] for further developments in terms of Brownian paths, and [10, 25] for


