Chapter 8

Lecture 28

Example 7. X_i are iid uniformly over $(0, \theta)$ for $\theta \in \Theta = (0, \infty)$.

Homework 6

1. Show that

a. With respect to Lebesgue measure on \mathbb{R}^n ,

$$\ell(\theta \mid s_n) = \begin{cases} 1/\theta^n & \text{if } \theta \ge X_i \; \forall i \\ 0 & \text{otherwise} \end{cases}$$

and $\hat{\theta} = \max\{X_1, \dots, X_n\}.$

- b. Condition 2 in the Theorem above is satisfied, and hence $\hat{\theta}_n \xrightarrow{\text{a.s.}} \theta$ for all θ (which we check directly also); but the likelihood function is not continuous, and hence the information function is not defined.
- c. $E_{\theta}(\hat{\theta}_n) = \frac{n}{n+1}\theta$, and $\theta_n^* := \frac{n+1}{n}\hat{\theta}$ is unbiased.
- d. $n(\theta \hat{\theta}_n)$ has the asymptotic distribution with density $\frac{1}{\theta}e^{-\frac{z}{\theta}}$ on $(0, \infty)$, and so $\hat{\theta}_n$ has a non-normal limiting distribution and $\hat{\theta}_n \theta = O(1/n)$.

(In regular cases, $\hat{\theta}$ has a normal limiting distribution and $\hat{\theta}_n - \theta = O(1/\sqrt{n})$.)

Asymptotic distribution of $\hat{\theta}$ (θ real) in regular cases

 $X = \{x\}$ (arbitrary), \mathcal{C} is a σ -field on X, P_{θ} is a probability on \mathcal{C} and $\theta \in \Theta$ for Θ an open interval in \mathbb{R}^1 . $dP_{\theta}(x) = \ell(\theta \mid x)d\nu(x)$, with ν a fixed measure. Let $s_n = (X_1, \ldots, X_n) \in S^{(n)} = X \times \cdots \times X$, $\mathcal{A}^{(n)} = \mathcal{C} \times \cdots \times \mathcal{C}$ and $P_{\theta}^{(n)} = P_{\theta} \times \cdots \times P_{\theta}$ on $\mathcal{A}^{(n)}$. We assume that $\ell(\theta \mid x) > 0$, $L(\theta \mid x) = \log_e \ell(\theta \mid x)$ has at least two continuous derivatives, $E_{\theta}(L'(\theta \mid x)) = 0$ and

$$I_1(\theta) = E_{\theta} \left(L'(\theta \mid x) \right)^2 = -E_{\theta} \left(L''(\theta \mid x) \right) > 0.$$