Chapter 7

Lecture 25

Using the score function (or vector)

Assume the usual setting, $(S, \mathcal{A}, P_{\theta}), \theta \in \Theta \subseteq \mathbb{R}^{p}$.

First consider the case p=1. Let u(s) be a trial solution of $L'(\theta \mid s)=0$. Assume that $\hat{\theta}-\theta=O(1/\sqrt{I(\theta)})$ and I is large. (Here θ is the true parameter, $E_{\theta}(\hat{\theta})\approx 0$ and $\mathrm{Var}_{\theta}(\hat{\theta})\approx 1/I(\theta)$.) Assume that u is not very inaccurate in the sense that, for any θ , $u(s)-\theta=O(1/\sqrt{I(\theta)})$. Then $\hat{\theta}-u=O(1/\sqrt{I(\theta)})$ under θ ,

$$0 = L'(\hat{\theta}(s) \mid s) = L'(u(s) \mid s) + (\hat{\theta}(s) - u(s))L''(u(s) \mid s) + O(1/I(\theta))$$

and

$$\hat{\theta}(s) = u(s) + \left(-\frac{1}{L''(u(s) \mid s)}\right)L'(u(s) \mid s) + O(1/I(\theta)).$$

Dropping the last term (order $1/I(\theta)$), we obtain the 'first Newton iterate' for solving $L'(\theta \mid s) = 0$.

Application 1. Let $u^{(0)}(s)$ be a trial solution of $L'(\theta \mid s) = 0$. Let

$$u^{(j+1)}(s) = u^{(j)}(s) + \left(-\frac{1}{L''(u^{(j)}(s) \mid s)}\right) L'(u^{(j)}(s) \mid s).$$

One hopes that $u^{(j)}(s) \to \hat{\theta}(s)$.