Chapter 3

Lecture 11

Unbiasedness has an appealing property, which we discuss here: Choose any estimate *t(s).* Imagining for the moment that *s* is unknown but *θ* is provided, what is the best predictor for t ?

Let λ be the prior; this determines M, as above. Regard t and g as elements of $L^2(M).$

7. *(t* is an unbiased estimate of g) \Leftrightarrow (for any choice of a probability λ on θ , g is the best (in MSE) predictor for t).

Proof. If t is an unbiased estimate of g, then, for any λ , $E(t | \theta) = q - i.e., g$ is the projection of t to the subspace of functions in $L^2(M)$ which depend only on *θ*; or, equivalently, *g* is the best predictor of *t* in the sense of $|| \cdot ||_M$. Conversely, assume that each one-point set in Θ is measurable and take λ to be degenerate at a point *θ.* The assumption that *g* is the best predictor of *t* tells us that $g(\theta) = E(t | \theta)$ or, equivalently, that t is an unbiased estimate of g.

Unbiased estimation; likelihood ratio

Choose and fix a $\theta \in \Theta$ and let $\delta \in \Theta$. Assume that P_{δ} is absolutely continuous with respect to P_{θ} on *A*; then, by the Radon-Nikodym theorem, there exists an *A*measurable function $\Omega_{\delta,\theta}$ satisfying $0 \leq \Omega_{\delta,\theta} \leq +\infty$ and $dP_{\delta} = \Omega_{\delta,\theta}dP_{\theta}$ (i.e., $P_{\delta}(A) =$ $\int_A \Omega_{\delta,\theta}(s) dP_{\theta}(s)$ for all $A \in \mathcal{A}$.

Note. Suppose that we begin with $dP_\delta(\theta) = \ell_\delta(s)d\mu(s)$ on *S*, where μ is given, and that we know that $P_{\theta}(A) = 0 \Rightarrow P_{\delta}(A) = 0$ (i.e., that P_{δ} is absolutely continuous with respect to P_{θ}). Then

$$
\Omega_{\delta,\theta}(s) = \begin{cases} \ell_{\delta}(s)/\ell_{\theta}(s) & \text{if } 0 < \ell_{\theta}(s) < \infty \\ 1 & \text{if } \ell_{\theta}(s) = 0 \end{cases}
$$

is an explicit formula for the likelihood ratio. In fact $\Omega_{\delta,\theta}$ can be defined arbitrarily on the set $\{s : \ell_{\theta}(s) = 0\}.$