Chapter 3

Lecture 11

Unbiasedness has an appealing property, which we discuss here: Choose any estimate t(s). Imagining for the moment that s is unknown but θ is provided, what is the best predictor for t?

Let λ be the prior; this determines M, as above. Regard t and g as elements of $L^2(M)$.

7. (t is an unbiased estimate of g) \Leftrightarrow (for any choice of a probability λ on θ , g is the best (in MSE) predictor for t).

Proof. If t is an unbiased estimate of g, then, for any λ , $E(t \mid \theta) = g$ – i.e., g is the projection of t to the subspace of functions in $L^2(M)$ which depend only on θ ; or, equivalently, g is the best predictor of t in the sense of $||\cdot||_M$. Conversely, assume that each one-point set in Θ is measurable and take λ to be degenerate at a point θ . The assumption that g is the best predictor of t tells us that $g(\theta) = E(t \mid \theta)$ or, equivalently, that t is an unbiased estimate of g. \Box

Unbiased estimation; likelihood ratio

Choose and fix a $\theta \in \Theta$ and let $\delta \in \Theta$. Assume that P_{δ} is absolutely continuous with respect to P_{θ} on \mathcal{A} ; then, by the Radon-Nikodym theorem, there exists an \mathcal{A} -measurable function $\Omega_{\delta,\theta}$ satisfying $0 \leq \Omega_{\delta,\theta} \leq +\infty$ and $dP_{\delta} = \Omega_{\delta,\theta}dP_{\theta}$ (i.e., $P_{\delta}(A) = \int_{\mathcal{A}} \Omega_{\delta,\theta}(s) dP_{\theta}(s)$ for all $A \in \mathcal{A}$).

Note. Suppose that we begin with $dP_{\delta}(\theta) = \ell_{\delta}(s)d\mu(s)$ on S, where μ is given, and that we know that $P_{\theta}(A) = 0 \Rightarrow P_{\delta}(A) = 0$ (i.e., that P_{δ} is absolutely continuous with respect to P_{θ}). Then

$$\Omega_{\delta,\theta}(s) = \begin{cases} \ell_{\delta}(s)/\ell_{\theta}(s) & \text{if } 0 < \ell_{\theta}(s) < \infty \\ 1 & \text{if } \ell_{\theta}(s) = 0 \end{cases}$$

is an explicit formula for the likelihood ratio. In fact $\Omega_{\delta,\theta}$ can be defined arbitrarily on the set $\{s : \ell_{\theta}(s) = 0\}$.