Chapter 2

Lecture 6

Bayes estimation

We have the setup from the previous lecture: $(S, \mathcal{A}, P_{\theta})$, $\theta \in \Theta$. We want to estimate *g(θ).* Let *B* be a σ -field in Θ and λ a probability on *B*. We assume that *g* is *B*measurable and that $g \in L^2(\Theta, \mathcal{B}, \lambda)$ - i.e., that $\int_{\Theta} g(\theta)^2 d\lambda(\theta) < \infty$. We regard θ as a random element and $P_{\theta}(A)$ as a conditional probability that $s \in A$, given θ . Let $w = (s, \theta), \Omega = S \times \Theta$ and $\mathcal{C} = \mathcal{A} \times \mathcal{B}$ be the smallest σ -field containing all sets of the form $A \times B$ with $A \in \mathcal{A}$ and $B \in \mathcal{B}$. We assume that $\theta \mapsto P_{\theta}(A)$ is \mathcal{B} -measurable for all $A \in \mathcal{A}$.

Lemma 1. *There exists a unique probability measure M on C such that*

$$
M(A \times B) = \int_B P_{\theta}(A) d\lambda(\theta) \ \forall A \in \mathcal{A}, B \in \mathcal{B}.
$$

(λ is the distribution of θ , P_{θ} is the distribution of *s* given θ and M is the joint distribution of $w = (s, \theta)$. We will see the explicit formula for Q_s – the distribution of θ given s – soon.)

Consider an estimate *t.* Our assumption on *g* is that

$$
E(g^2) = \int_{\Omega} g^2 dM = \int_{\Theta} g^2 d\lambda < \infty,
$$

so

$$
\overline{R}_t = \int_{\Theta} R_t(\theta) d\lambda(\theta) = \int_{\Theta} E_{\theta} (t - g(\theta))^2 d\lambda(\theta)
$$

= $E(E((t - g)^2 | \theta)) = E(t - g)^2 = ||t - g||^2$

(the norm taken in $L^2(\Omega, \mathcal{C}, M)$). We would like to choose a t to minimize this quantity. Since t is a function only of s , the desired minimizing estimate $-$ which we will denote by t^* – is the projection of g to the subspace of all A -measurable functions $t(s)$ satisfying $E_M(t(s)^2) < \infty$. We know that $t^*(s) = E(g(\theta) | s)$.