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In a missing data problem we observe the result of a (known) many-to-one mapping of an
unobservable 'complete' dataset. The aim is to estimate some parameter of the distribution
of the complete data. In this situation, the stochastic version of the EM algorithm is
sometimes a viable option. It is an iterative algorithm that produces an ergodic Markov
chain on the parameter space. The stochastic EM (StEM) estimator is then a sample from
the equilibrium distribution of this chain. Recently, a method called 'coupling from the
past' was invented to generate a Markov chain in equilibrium. We investigate when this
method can be used for a StEM chain and give examples where this is indeed possible.
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1 Stochastic EM

The objective of this paper is to combine two algorithms: the stochastic
EM (StEM) algorithm and perfect sampling through coupling from the past
(CFTP). In the present section we describe the former and in the next sec-
tion the latter algorithm. In the third section we combine the two and
give examples. Finally, we present a brief review of two relevant concepts:
stochastic and realizable monotonicity.

Consider the following estimation problem. Suppose that X is dis-
tributed according to a probability measure PQ0. Suppose we can observe
only the result of a many-to-one mapping Y = Y(X). The goal is to estimate
θo from observing Y = y. The parameter 0Q is assumed to be in some general
set Θ. This setup is sometimes called a missing data problem. Often the so-
called EM algorithm (Dempster, Laird and Rubin (1977)) provides a method
to find the maximum likelihood estimator of #o There are two drawbacks.
The first is that it is not known how many iteration steps are needed to
come close enough to convergence. The other is that sometimes the E-step,
computation of the conditional expectation of the likelihood given the data,
is not possible.

In this latter case, the stochastic version of the EM algorithm (StEM)
(Celeux and Diebolt (1986), Wei and Tanner (1990)) may be a viable alter-
native. For a review and large sample results see Nielsen (2000). The algo-
rithm works as follows. Suppose that we can sample from the conditional


