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Random additive functions defined on intervals provide a general framework for varied ap-
plications including (dependent) array sums, and level-exceedance measures for stochastic
sequences and processes. Central limit theory is developed in Leadbetter and Rootzén
(1993) for families {¢r(I) : T > 0} of such functions under (array forms of) standard
strong mixing conditions. One objective of the present paper is to introduce a potentially
much weaker and more readily verifiable form of strong mixing under which the limiting
distributional results are shown to apply. These lead to characterization of possible limits
for such {r(I) as those for independent array sums, i.e. the classical infinitely divisible
types. The conditions and results obtained for one interval are then extended to apply to
joint distributions of {{r(I;) : 1 < j < p} of (disjoint) intervals I, I, ... I, asymptotic
independence of the components being shown under the extended conditions. Similar re-
sults are shown under even slightly weaker conditions for positive, additive families. Under
countable additivity this leads in particular to distributional convergence of random mea-

sures under these mixing conditions, to infinitely divisible random measure limits having
independent increments.
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1 Introduction

By a random additive function (r.a.f.) we mean a random function {(I)
defined for subintervals I = (a,b] of the unit interval and additive in the
sense that {(a,b] + {(b,c] = {(a,c] when 0<a<b<c<1. To our knowledge,
such a framework was first used in proving a central limit theorem in the
early (and pioneering) paper Volkonski and Rozanov (1959).

As described in Leadbetter and Rootzén (1993) and (1997), r.a.f. families
{{r(I)} (or {¢n(I)}) provide a simple unifying framework for (array) cen-
tral limit problems for both discrete and continuous parameter processes.
This includes the general limiting distributional properties of array sums
and exceedance measures, which are useful in a variety of areas such as en-
vironmental regulation and structural reliability (cf. Leadbetter and Huang
(1996)). For example with obvious notation, for I = (a,b] C (0,1], ¢,(I) =
2 i/ner &n,i gives general array sums, (n(I) = 35, /ner 1(& > ug) and (r(I) =
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