Games against a prophet for stochastic processes

A. Meyerthole^a and N. Schmitz^{b*}

 $^a \mathrm{Gesellschaft}$ fr aktuarielle Beratung, Berrenrather Str. 197; 50937 Kln, Germany

^bInstitut fr Mathematische Statistik, University of Mnster, Einsteinstr. 62; D-48149 Mnster, Germany

Abstract

Two players (the ,,prophet" and the gambler) observe a uniformly bounded stochastic process $(X_s)_{s\in S}$. The prophet's maximal expected gain $E(\sup_{s\in S} X_s)$ is compared with the maximal expected gain $\sup_{\tau} EX_{\tau}$ of the gambler who is restricted to use stopping rules τ . Games against a prophet are two-person zero-sum games where the prophet picks the distribution and the gambler chooses a stopping rule. To obtain minimax-theorems for these games one has to admit mixed or randomized stopping rules. It is shown that mixed threshold stopping rules can be used to construct saddle-points for several cases.

AMS classifications: 60G40, 62L15, 90D05

Keywords: Prophet inequality, optimal stopping, prophet region, balayage, two-person zero-sum game, minimax-theorem, game against a prophet.

1. Introduction

Prophet theory is concerned with problems of the following kind: Two players, the prophet and the gambler, observe a (uniformly bounded) stochastic process $X_S = (X_s)_{s \in S}$ where $S = \{1, \ldots, n\}$ (finite horizon), $S = \mathbb{IN}$ (infinite horizon) and $S = [a, b] \subset [0, \infty)$ (continuous time) are the most interesting special cases. The gambler may stop this process at any time $s \in S$. His decision, leading to the reward X_s , may take into account the previous observations $X_t, t \leq s$, but not the future ones, i.e. he is restricted to use non-anticipating stopping functions τ . The supremum over the expected

^{*}Corresponding author; E-mail: SCHMNOR@MATH.UNI-MUENSTER.DE