CHAPTER 5

Expansion of the Posterior, Bayes Estimate and Bayes Risk

5.1. Expansion of the posterior. Let $P(\theta)$ as well as $\pi(\theta)$ stand for a prior probability density and, deviating slightly from Ghosh, Sinha and Joshi [(1982), page 422]

(5.1)
$$b = -\frac{1}{n} \frac{d^2 \log p(X_1, X_2, \dots, X_n | \theta)}{d\theta^2} \Big|_{\hat{\theta}}.$$

Let

(5.2)
$$F_n(h) = P\left\{\sqrt{nb}\left(\theta - \hat{\theta}\right) < h|X_1, X_2, \dots, X_n\right\}$$

be the posterior distribution function of the normalized θ . Under various conditions, $F_n(h)$ is approximately $\Phi(h)$, where Φ is the standard normal distribution function.

Here is a typical result. Assume regularity conditions on $p(x|\theta)$ and let $\pi(\theta)$ be continuous and positive at a fixed point θ_0 . Then

(5.3)
$$\lim_{n \to \infty} \sup_{h} |F_n(h) - \Phi(h)| \to 0 \quad \text{a.s.} (P_{\theta_0}).$$

Le Cam (1958) has a similar theorem under P_{π} , where P_{π} is the marginal distribution of $\{X_n\}$ under $\pi \otimes P_{\theta}$. Here $\pi \otimes P_{\theta}$ stands for the joint distribution of θ and X's under which θ has density $\pi(\theta)$ and, given θ , X's have the joint distribution P_{θ} . Under P_{θ} , X's are i.i.d. $p(x|\theta)$.

Under stronger conditions on $p(x|\theta)$ and the assumption of (k + 1) times continuous differentiability of $\pi(\theta)$ at θ_0 and $P(\theta_0) > 0$, Johnson (1970) proves the following rigorous and precise version of a refinement due to Lindley (1961).