
SECTION 12 

Random Convex Sets 

Donoho (1982) and Donoho and Gasko (1987) studied an operation proposed by 
Tukey for extending the idea of trimming to multidimensional data. Nolan (1989a) 
gave a rigorous treatment of the asymptotic theory. Essentially the arguments 
express the various statistics of interest as differentiable functionals of an empirical 
measure. The treatment in this section will show how to do this without the formal 
machinery of compact differentiability for functionals, by working directly with 
almost sure representations. [Same amount of work, different packaging.] 

To keep the discussion simple, let us consider the case of an independent sample 
e1, {2, ... of random vectors from the symmetric bivariate normal distribution p 
on JR2 , and consider only the analogue of 25% trimming. 

The notation will be cleanest when expressed (using traditional empirical process 
terminology) in terms of the empirical measure Pn, which puts mass 1/n at each of 
the points 6 (w), ... 'en(w). 

Let 1-C denote the class of all closed halfspaces in JR2 • Define a random compact, 
convex set Kn = Kn(w) by intersecting all those halfspaces that contain at least 
3/4 of the observations: 

Kn(w) = n{H E 1-C: PnH 2: n. 
It is reasonable to hope that Kn should settle down to the set 

B(ro) = n{H E 1-C: PH 2: n, 
which is a closed ball centered at the origin with radius r 0 equal to the 75% point of 
the one-dimensional standard normal distribution. That is, if !P denotes the N(O, 1) 
distribution function, then r0 = q,-1(3/4) ~ .675. Indeed, a simple continuity 
argument based on a uniform strong law of large numbers, 

(12.1) sup IPnH- PHI-+ 0 almost surely, 
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would show that, for each f > 0, there is probability one that 

B(ro- f) ~ Kn(w) ~ B(ro +f) 
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eventually. 


