SECTION 7

Maximal Inequalities

Let us now pull together the ideas from previous sections to establish a few useful maximal inequalities for the partial-sum process S_n . To begin with, let us consider an infinite sequence of independent processes $\{f_i(\omega, t)\}\$, in order to see how the bounds depend on *n.* This will lead us to the useful concept of a manageable triangular array of processes.

The symmetrization bound from Section 2 was stated in terms of a general convex, increasing function Φ on \mathbb{R}^+ . The chaining inequality of Section 3 was in terms of the specific convex function given by $\Psi(x) = \frac{1}{5} \exp(x^2)$.

Section 2 related the maximum deviation of S_n from its expected value,

$$
\Delta_n(\omega) = \sup_t |S_n(\omega, t) - M_n(t)|,
$$

to the process $\sigma \cdot f$ indexed by the random set

$$
\mathcal{F}_{n\omega} = \{ (f_1(\omega, t), \ldots, f_n(\omega, t)) : t \in T \}.
$$

If we abbreviate the supremum of $|\boldsymbol{\sigma}\cdot\mathbf{f}|$ over $\mathcal{F}_{n\omega}$ to $L_n(\boldsymbol{\sigma}, \omega)$, the inequality becomes

(7.1)
$$
\mathbb{P}\,\Phi(\Delta_n) \leq \mathbb{P}\,\Phi(2L_n).
$$

We bound the right-hand side by taking iterated expectations, initially conditioning on ω and averaging over σ with respect to the uniform distrbution \mathbb{P}_{σ} .

The chaining inequality from Theorem 3.5 bounds the conditional Ψ norm of L by

$$
J_n(\omega) = 9 \int_0^{\delta_n(\omega)} \sqrt{\log D(x, \mathcal{F}_{n\omega})} \, dx, \quad \text{where } \delta_n(\omega) = \sup_{\mathcal{F}_{n\omega}} |f|.
$$

Here, and throughout the section, the subscript 2 is omitted from the ℓ_2 norm $|\cdot|_2$; we will make no use of the ℓ_1 norm in this section. Written out more explicitly, the inequality that defines the Ψ norm becomes

(7.2)
$$
\mathbb{P}_{\sigma} \exp(L_n(\sigma, \omega) / J_n(\omega))^2 \leq 5.
$$

Because J_n is a random variable, in general we cannot appeal directly to inequality (7.1) with $\Phi(x) = \exp(x^2/2J_n^2)$, to get some sort of bound for the Ψ norm of the