SECTION 6

Convex Hulls

Sometimes interesting random processes are expressible as convex combinations of more basic processes. For example, if $0 \le f_i \le 1$ for each *i* then the study of f_i reduces to the study of the random sets $\{\omega : s \le f_i(\omega, t)\}$, for $0 \le s \le 1$ and $t \in T$, by means of the representation

$$f_{\iota}(\omega,t) = \int_0^1 \{s \leq f_{\iota}(\omega,t)\} \, ds.$$

More generally, starting from $f_i(\omega, t)$ indexed by T, we can construct new processes by averaging out over the parameter with respect to a probability measure Q on T:

$$f_i(\omega, Q) = \int f_i(\omega, t)Q(dt).$$

[This causes no measure-theoretic difficulties if there is a σ -field \mathcal{T} on T such that f_i is jointly measurable in ω and t and Q is defined on \mathcal{T} .] Let us denote the corresponding process of sums by $S_n(\omega, Q)$, and its expectation by $M_n(Q)$. Because

$$|S_n(\omega, Q) - M_n(Q)| \le \int \sup_t |S_n(\omega, t) - M_n(t)|Q(dt),$$

it is easy to verify that

(6.1)
$$\sup_{Q} |S_n(\omega, Q) - M_n(Q)| = \sup_{t} |S_n(\omega, t) - M_n(t)|.$$

Some uniformity results for the processes indexed by probability measures on T follow trivially from uniformity results for processes indexed by T.

The operation of averaging out over t corresponds to the formation of convex combinations in \mathbb{R}^n . The vectors with coordinates $f_1(\omega, Q), \ldots, f_n(\omega, Q)$ all lie within the closed convex hull $\overline{co}(\mathcal{F}_{\omega})$ of the set \mathcal{F}_{ω} . The symmetrization analogue of the equality (6.1) is

$$\sup_{\overline{co}(\mathcal{F}_{\omega})} |\boldsymbol{\sigma} \cdot \mathbf{f}| = \sup_{\mathcal{F}_{\omega}} |\boldsymbol{\sigma} \cdot \mathbf{f}|,$$

which suggests that there might be a connection between the packing numbers for \mathcal{F}_{ω} and the packing numbers for $\overline{co}(\mathcal{F}_{\omega})$. A result of Dudley (1987) establishes such