Moduli spaces of twisted sheaves on a projective variety

Kôta Yoshioka

Dedicated to Masaki Maruyama on the occasion of his 60th birthday

Appendix by Daniel Huybrechts and Paolo Stellari

§0. Introduction

Let X be a smooth projective variety over \mathbb{C}. Let $\alpha := \{\alpha_{ijk} \in H^0(U_i \cap U_j \cap U_k, O_X)\}$ be a 2-cocycle representing a torsion class $[\alpha] \in H^2(X, O_X^*)$. An α-twisted sheaf $E := \{(E_i, \varphi_{ij})\}$ is a collection of sheaves E_i on U_i and isomorphisms $\varphi_{ij} : E_i|_{U_i \cap U_j} \to E_j|_{U_i \cap U_j}$ such that $\varphi_{ii} = \text{id}_{E_i}$, $\varphi_{ji} = \varphi_{ij}^{-1}$ and $\varphi_{ki} \circ \varphi_{jk} \circ \varphi_{ij} = \alpha_{ijk} \text{id}_{E_i}$. We assume that there is a locally free α-twisted sheaf, that is, α gives an element of the Brauer group $\text{Br}(X)$. A twisted sheaf naturally appears if we consider a non-fine moduli space M of the usual stable sheaves on X. Indeed the transition functions of the local universal families satisfy the patching condition up to the multiplication by constants and gives a twisted sheaf. If the patching condition is satisfied, i.e., the moduli space M is fine, than the universal family defines an integral functor on the bounded derived categories of coherent sheaves $D(M) \to D(X)$. Assume that X is a $K3$ surface and $\dim M = \dim X$. Then Mukai, Orlov and Bridgeland showed that the integral functor is the Fourier-Mukai functor, i.e., it is an equivalence of the categories. In his thesis [C2], Căldăraşu studied the category of twisted sheaves and its bounded derived category. In particular, he generalized Mukai, Orlov and Bridgeland's results on the Fourier-Mukai transforms to non-fine moduli spaces on a $K3$ surface. For the usual derived category, Orlov [Or] showed that the equivalence class is described in terms of the Hodge structure of the Mukai lattice. Căldăraşu conjectured that a similar result also holds for the derived

Received December 13, 2004.