
Chapter VI
Hyperregularity and Priority

The notion of hyperregularity is introduced and studied with the help of priority
arguments. Two solutions of Post's problem are obtained, as well as Simpson's
dichotomy, for the metarecursively enumerable degrees.

1. Hyperregular Sets

Let A ^ ω^κ. A is said to be hyperregular if for every f <WA and 7, /[y] is
bounded. The concept of hyperregularity, suitably generalized, figures prominently
in the solutions of Post's problem offered in Part C. Its relation to Σx admissibility
is made clear in Chapter VII. (For those who cannot wait: Assume A is regular.
Then A is hyperregular iff <L(ω^κ), A} is Σ t admissible.)

|m| meO

is weakly metarecursive in O and maps ω onto ω?κ. The main result of this section
is the existence of a metarecursively enumerable set that is hyperregular but not
metarecursive.

In general a hyperregular set need not be regular, but the next lemma says
otherwise for the case of maximum interest.

1.1 Lemma. If A is metarecursively enumerable and hyperregular, then A is regular.

Proof. Suppose Any is not metafinite. Let g metarecursively enumerate Any
without repetitions. Define

0 if δ > y or δφA,

σ if δ<y a n d g(σ) = δ.

Then/ < w A and/[y] = ω?κ. D

If a set is both regular and hyperregular, then it behaves as tamely as possible
with respect to reducibility, as is expressed by the next lemma, and by Exercise 1.7.
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1.2 Lemma. Suppose A is regular and hyperregular.

(ί) Iff <WΛ and y < ω^κ, thenf[y is metafinίte.
(ii) Iff<wA,thenf<MA.

(Hi) IfB<wA9 then B is regular and hyperregular.

Proof
(i) Let φ be metarecursive and such that

= δ~(Ep)(EH)(EJ)tφ(p,β) = <HJiδ} & H^A & J c CA\

Let g(β) be

(1) μp(EH)(EJ)(Ep)lφ(p,β) = <tf, J,<5> & H^A & J^ cA\

g(β) is the "least computation" oϊf{β) from A via φ. To see that g <WA, let φ{p9β)
be <ίίj;, Jg, δp

β} and define

(sup+ is the strict least upper bound.) Since A is regular, Ant(β) is metafinite. The
value oϊg(β) can be obtained by substituting A n t(β) for A in (1). Thus the value of
g(β) is determined by a metafinite set of facts about A, and so g < WA.

It follows from the hyperregularity of A that g[y~\ is bounded, and consequently
that t\_y] is bounded by some s(y). The values off(β) (β < y) are computable from
the metafinite set A n s(y) via φ, hence/ [y is metafinite.

(ii) The proof of (i) showed that f[γ9 regarded as a function of y, is weakly
metarecursive in A. It follows t h a t / < M A

(iii) If h < w B and B < w A, then h < w A by (ii). So B is hyperregular because A is.
Fix y and define

ί1 \δeBnγ

0 otherwise.

By (i) fe[y] is metafinite, hence B n 7 is. D

The next result is needed for Simpson's dichotomy (Section 3), and is proved by a
recursive approximation technique.

1.3 Lemma (Simpson 1971). // A is metarecursively enumerable but not hyper-
regular, then some non-hyper arithmetic Πj C is weakly metarecursive in A.

Proof By Owings' ω-sets theorem (4.6) it suffices to find a metarecursively
enumerable ω-set D <WA. Since A is not hyperregular, there exists an/: ω -• ω^κ

such t h a t / < w A , / i s strictly increasing, a n d / [ ω ] is unbounded. Let D be the
complement of the range of/ The fact that/ is strictly increasing on ω implies
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D <WA. A metarecursive approximation of / is needed to show D is meta-
recursively enumerable.

Let φ be metarecursive and such that

(H,J,δy & H <Ξ A & J^cA]

for all n < ω./is approximated by guessing at A. Suppose g is metarecursive and
</K κ ] = ALet

Λδ = {g(β)\β < δ}.

Thus A is the union of a nondecreasing, metarecursive sequence of metafinite sets.
Define

f(n9τ) = δ^(EH){EJ)(Eσ)σ<τlφ(n,σ) = (H,J,δ} & H ̂  Aτ & J^cAτ].

As defined above, λnτ\f(n,τ) is a many-valued, partial metarecursive function.
Make it total on ω x ω^κ by setting/(n,τ) = 0 when no σ < τ satisfies the defining
condition. Make it single-valued by insisting on the least such σ when there is one.
By the regular sets theorem (4.3) A may be taken to be regular. It follows that

Consequently

(1) («)(^)(τ) τ

In short lim/(n,τ) =f(n). The function/(n,τ) is said to metarecursively approxi-
τ

mate the function/(n).

For the moment assume (2):

(2a) for each n, λτ\f(n,τ) is nondecreasing;

(2b) (n)(σ)(τ)lσ > τ and f(n9σ)>f(n,τ)^f(n,σ) > sup/(m,τ)].
m < ω

If (3) holds, then D is metarecursively enumerable.

(3) δeD~(Eτ)(Em)U(m,τ)>δ and (n)π<m(^/(n,τ))]

To verify (3) first assume δeD. Thus δ Φf{n) for any n. Hence there exist m and τ
such that

f(m)>δ and (n)n^m(f(n) =/(n,τ)).

It follows from (2a) that m and τ satisfy the right side of (3). Now fix n and suppose
f(n) substituted for δ satisfies the right side of (3). Thus there exist τ and m such that

and (p) p < m(/(n)
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Since/is strictly increasing, it follows from (2a) that m > n. Hence

f(m,τ)>f(n)ϊf(n,τ).

But then (2) implies f(n,σ) >/(m,τ) for some σ > γ; hence/(n,σ) >/(n), an
impossibility according to (1) and (2a).

For the sake of (2) define

!

sup h(n,δ) if f (n,τ) < suph(n,δ),
δ<τ δ<τ

/(n,τ)u sup h(m,δ) otherwise.
δ<τ

m<ω

Let h(n) = lim h(n, τ). h(n, τ) obeys (2). h^wA and h([ω] is unbounded. D
τ

1.4-1.10 Exercises

1.4. Suppose every set weakly metarecursive in A is regular. Show A is hyper-
regular.

1.5. Find a set that is hyperregular but not regular. Find such a set metarecursive
in 0.

1.6.'(Macintyre 1969). Find a set that does not have the same metadegree as any
regular set. Find such a set metarecursive in 0.

1.7. Recall the definitions of C(E,B) and Cm(E,B) given in Exercise 3.8 of
Chapter V. B is said to be subgeneric if

The computations from B via E of nonrecursive ordinal height add nothing
to C(E, B). (In Chapter VII it will be seen that B is subgeneric iff

, ω^κ], B} is Σ1 admissible.) Show every subgeneric set is hyperregular.

1.8. Find a subgeneric set that is not regular.

1.9. Assume B is regular and hyperregular. Show B is subgeneric. Show
C(E,B)=Cm(E,B).

1.10. Find a hyperregular set that is not subgeneric.

2. Two Priority Arguments

The main result of this section is the existence of a hyperregular, metarecursively
enumerable set A that is not metarecursive. It follows from Lemma 2.1 that A is not
metacomplete and herίce constitutes a positive solution to Post's problem for the
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metarecursively enumerable degrees. The construction of A is a priority argument
in the sense originated by Friedberg 1957b and Muchnik 1956. It suggests that the
generalization of finite to metafinite, and r.e. to meta r.e., is solid enough to support
the combinatorics associated with nontrivial dynamic arguments of classical
recursion theory.

A secondary result of this section is the construction by means of a priority
argument of a non-hyperarithmetic Π} set B of lower metadegree than Kleene's O.
The construction of B is intended to suggest that metarecursion theory can be
applied to prove theorems about H\ sets analogous to classical results about
recursively enumerable sets. One such is the existence of a maximal Π} set (Exercise
2.9). It has the virtue of being expressible without any reference to notions of
metarecursion theory.

2.1 Theorem (Sacks 1966). There exists a hyperregular, metarecursively enumerable
set that is not metarecursίve.

Proof. Recall the partial metarecursive function φi(e9x) of Theorem I.4.V. Let Re

be the range of λx\φλ(e, x). Then {Re\e < ω\ is an enumeration of the meta-
recursively enumerable sets. Recall that

(1) φι(e9x)*y~ (/)(Eu) - T(f(u% g{e\ n{x\ n{y)\

Since the right side of (1) is Π}, it is equivalent to

h{g{e\n{x\n{y))eθ

for some recursive function ft. Define

yeRl by (Ex)x<σl\h(g(eln(x),n(y))\<σl

Then Rσ

e is metafinite, λσe \ Rσ

e is metarecursive, and Re = (J R%. λσe \Rσ

e provides a
σ

simultaneous metarecursive enumeration of the metarecursively enumerable sets.
Say (e}^(y) is defined and equal to δ iff

(2) (EH)(EJ)[<#,J,y,<5>eR e & H c A & Jς^cA.]

{e}Λ is a many-valued, partial function. If {e}A is single-valued and total, then
{e}A <WA. Conversely, iϊf<wA, t h e n / = {e}A for some e < ω.

The theorem is proved by metarecursively enumerating a set A with three
objectives in mind.

(3) cA is unbounded.

(4) If Re is unbounded, then Re n A Φ 0

(5) If {e}A(ή) is defined and single-valued for all n < ω, then λn\{e}A(ή) is
metafinite.
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(3) and (4) combine to show cΛ is not metarecursively enumerable. Hence A is
not metarecursive, as in Post's simple set construction in classical recursion theory.
(5) implies A is hyperregular, since any infinite recursive ordinal can be put into a
matafinite, one-to-one correspondence with ω.

A will be the union of a non-decreasing, metarecursive sequence Aσ (σ < ω^κ) of
metafinite sets. Let A<σ denote u {Aδ\δ < σ}. Say {e}A<σ (γ) is defined and equal
to 5 iff

(6) (EH)(EJ)[<#, J,γ,δ)eRσ

e & H <= Aσ & J<^cA<σ\

{e}A<σ(y) is a many-valued, partial metarecursive function of e, σ and γ.
If H ^ A, then H ^ Aσ for all sufficiently large σ. Hence any < # , J,y,(5> that

satisfies the matrix of (2) also eventually satisfies the matrix of (6). Thus {e}^(y) = δ
implies {e}A<σ(y) = δ for all sufficiently large σ.

For the sake of objectives (4) and (5) attempts are made during the enumeration
of A to satisfy the following requirements.

Req 2e: If Re is unbounded, then there is a σ such that Re n Aσ φ 0.
Req 2e + 1: If {e}A(n) is defined and single-valued for all n < ω, then

(7) λn\{e}A(n) = λn\{e}A<°(n)

for all sufficiently large σ.
An even-numbered requirement is said to be positive, because it is met by adding

an element to A. An odd-numbered requirement is said to be negative, because it is
met by keeping every member of some metafinite set out of A. To elaborate,
suppose a σ can be found such that the right side of (7) is defined for all n < ω. Then
req 2e + 1 can be met by not adding any element of cA<σ to A at stage τ for any
τ > σ. This strategy, if successful, preserves forever after computations established
at the beginning of stage σ. Consequently an odd-numbered requirement is
sometimes called a preservation requirement.

Positive and negative requirements have a potential for conflict. Suppose δ is
added to A at stage τ to meet requirement 2e0. Suppose further that δφA<σ is a
negative fact needed for some computation developed at stage σ < τ and being
preserved in the hope of meeting req 2e + 1. Such an event is termed an injury to
req 2e+ 1 for the sake of req2e o The frequency of injury is minimized by
Friedberg-Muchnik priorities. Req 2e0 is said to be of higher priority than
req 2e + 1 if e0 < e. An injury to one requirement for the sake of another is allowed
to happen only if the injured requirement has lower priority than the other. Thus
adding an element to A for the sake of req 2e0 never injures req 2e+\ when e <e0.

A recursion on σ simultaneously defines metarecursive functions λσ\Aσ,
λσe\m(σ,e) and λσe\r(σ,e). m guides the preservation requirements, and r insures
that cA is unbounded.

Stage σ. If {e}A κ σ(n) is defined, let < Hσ

en, Jσ

βj n > be the least <//, J > that satisfies

(Eδ)l(H9J9n,δ}eR° & H^A<σ & J<^cA<σ].
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("least <fί, J>" is given a precise meaning by referring to some metarecursive one-
to-one correspondence between ωfκ and the set of all metafinite <H, J>'s.) Define

ne = Λ < ω ( 4 < m [ { ή ί < σ ( n ) is defined],

m(σ9e)=μβl(δ)s<Λβ>m(δ9e) & β > sup{J*Jn < nβ})]

(When possible, <5 < m(σ,e) is kept out of y4τ(τ > σ) in order to preserve {e}* < σ (n)
for all n < ne.)

Let p: ω^κ -» ω be a one-one, into, metarecursive function. Define

r(σ,e) = μβlβφA<σ & β>supr(δ,e) & (eep[σ] ^j? > p"1^))].

Stage σ is completed by attending to req2e0, where ^ 0 = h(σ) and λ is a
metarecursive function that enumerates every finite ordinal unboundedly often. If

(8) Rσ

eonA<σ = 0,

and there is a β such that

(9) βeRσ

eo & (e)e<eo[_m(σ,e) < β & r(σ,e) < j?],

then add the least such β to A. Otherwise Aσ = A<σ.
Condition (8) is all important. It implies:

(10) For each e0, there is at most one stage σ at which an ordinal is added
to A for the sake of req 2e0.

If β is added to A at stage σ and β < ro(σ,e), then that act is said to injure
req 2e + 1. (9) and (10) imply:

(11) For each e the set of stages at which req 2e + 1 is injured has
cardinality at most e + 1.

To prove (5) fix e and assume {e}A(rή is defined and single-valued for all n < ω. It
follows that for each m < ω, and all sufficiently large σ,

(12) W Λ < m [ W ί < f f W is defined].

By (11) there is a stage σe after which req 2e + 1 is never injured. For each m < ω,
let σ(m) be the least σ > σe that satisfies (12). The "least" computations that make
(12) true when σ = σ(m) are preserved forever after. λm\ σ(m) is metarecursive, hence
{σ(m)\m < ω} is bounded above by some τ. Consequently,

and (5) follows.
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To prove (3), fix e and consider the behavior of r(σ,e) as σ increases. r(σ,e) is non-
decreasing. It increases at at most e + 2 stages: once if eep\_ω\κ\ and at most once
for the sake of req 2e0 for each e0 < e. Let

(13) φ)=limr(σ,4
σ

The set {r(e)\e < ω} is unbounded, since r(p(y)) > γ for all γ < ωfκ. For all σ and e,
r(σ,e)φA<σ. Hence for all e, r(e)φA.

To prove (4), fix e0 and assume Reo is unbounded. To find a β that satisfies (9), it
suffices by (13) to show

(14) limm(σ,e) exists
σ

for each e <e0. Fix e. Let de be the strict upper bound of all m such that σ(m), as
defined above in the proof of (5), exists. Thus de < ω. The set {σ(m)\m < de) is
either finite, or metafinite as in the proof of (5), hence bounded above by some τ. It
follows that m(σ,e) = m(τ,e) for all σ > τ. D

2.2 The Projectum. Recall the function p: ω^κ -• ω from the proof of Theorem 2.1.
It is metarecursive, one-one and into. It injects ω^κ into ω in a manner effective
enough to allow requirements to be indexed by finite ordinals rather than recursive
ordinals. It is conventional to sum up the situation by calling ω the projectum of
ω^κ. The role of the projectum in the proof of Theorem 2.2 is seen by considering
Ie9 the set of stages at which req 2e + 1 is injured. The construction of A is such that
Ie is metarecursively enumerable (uniformly in e). To make the proof of 2.2 work it
was necessary to bound Ie. The bound followed from the finiteness of Ie, which in
turn followed from the finiteness of e. It would have been enough for Ie to have been
metafinite. If requirements had been indexed by recursive ordinals, then Iδ, when
δ > ω, would have had little chance of being finite or even metafinite, although it
would have still been metarecursively enumerable.

The notion of projectum is central in the priority arguments of Part C, where
ω^κ is replaced by an arbitrary Σx admissible ordinal.

2.3 Corollary. There exists a metarecursively enumerable set that is neither meta-
recursive nor metacomplete.

Proof. Let A be an instance of Theorem 2.1. A is not metacomplete by Proposition
4.5.V and Lemma 1.2(iii). D

The proof of Corollary 2.3 provides a hyperregular solution to Post's problem
for the metarecursively enumerable degrees. The next theorem supplies a Πj
solution B. The construction of B draws on priorities as in the proof of Theorem 2.2,
but there is an additional difficulty. Since B ̂  ω, a metafinite computation of B can
involve unboundedly much of B. As a result the positive and negative requirements
can crowd each other more severely than they did above.
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Theorem 2.4 should be compared with Spector's Theorem (7.2.II): Kleene's 0
is hyperarithmetic in every non-hyperarithmetic Πj set.

2.4 Theorem (Sacks 1966). There exists a non-hyperarithmetic Yl\ set B such that
Kleene's O is not weakly metarecursive in B.

Proof. Two Π} sets, B and C, are simultaneously metarecursively enumerated with
the following objectives in mind.

(1) ω — B is infinite.

(2) If Q is Π} and infinite, then Q π B Φ 0 .

(3) Cj:wB.

(1) and (2) imply B is not hyperarithmetic. It follows from (3) that O £ w B, since C
is many-one reducible to O via a recursive function.

Recall Re and Rσ

e from the beginning of the proof of Theorem 2.1. Let
Qe = Renω and Qσ

e = Rσ

en ω. Then {Qe\e < ω} is an enumeration of the Π} sets;

λσe\Qδ

e is metarecursive; and Qe= (J Qσ

e. Define {e}B(n) as in Theorem 2.1,
σ

formula (2), with A replaced by B and γ by n. B will be the union of a
non-decreasing, metarecursive sequence Bσ(σ < ω^κ) of metafinite subsets of ω.
Define {e}B < σ(n) as in Theorem 2.1, formula (6), with A replaced by B and y by n.

Objectives (2) and (3) lead to the following requirements.
Req 2e\ If Qe is infinite, then Qσ

enBσ φφ for some σ.
Req 2e + 1: There exists an n such that if {β}β(n) is defined and singlevalued, then
C(n) φ {e}B(n). (C(ή) is the characteristic function of C) The construction is a
recursion on σ that simultaneously defines metarecursive functions λσ\Bσ,
λσ\Cσ, λσe\r{σ,e\ λσe\n(σ,e) and λσe\J(σ,e). For each e, r(σ,e) converges
to the e-th member of ω — B, and n(σ,e) converges to an n that satisfies
req 2e + 1. J(σ,e) is a finite subset of cB<σ associated with the preservation
oϊ{e}B<σ(n(σ,e)).
Let λmn\z(m,n) be a one-one recursive function that maps ω2 onto ω.
Stage σ = 0. Set B° = C° = 0 , J(0,e) = 0 , r(09e) = e and n(0,e) = z(09e).
Stage σ > 0. (For any Aσx|/(σ,x), define

/( < σ,x) = sup{/(<$,x)I<S < σ}.)
Assume

(4) ω — B<σ is infinite & r(< σ,e) < ω & H( < σ,e) < ω

for all e. (Assumption (4) will be proved by induction on δ < σ in a moment.) Define
by induction on e

(5) r(σ,e) = μm[me(ω-B<σ) & m>r(<σ,e)

& (iWm>r(σ,i))].
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Let h be a metarecursive function that enumerates all finite ordinals unboundedly
often. Stage σ splits into two cases corresponding to even and odd numbered
requirements.

Case 0: h(σ) = 2e. If Qσ

e n B < σ = 0 and there is a p such that

(6) peQσ

e & (i)i<eίpφJ(<σJ) & p>r(σ,i)^

then add the least such p to B < σ to obtain Bσ, and define

(7) n(σ, i) = n(<σ, i) for all i < e\

n(σ, i) = ux [x > n( < σ, i) & (Em)(x = z(ί, m))]

for all ί > e.
Otherwise Bσ = B<σ and n(σj) = n(<σj) for all i.

Case 1: h(σ) = 2e + 1. Let Bσ = B<σ and n(σ,i) = n(< σ,Ϊ) for all i. Define

as in the proof of Theorem 2.1, formula (6), with A replaced by B, y by n, and cA < σ

by ω — B<σ, and with the restriction that J be finite. The restriction on J is
important because a typical metafinite computation from B<σ might mention all of
ω and prevent any p from satisfying (6). Of course there is now the fear that (8) is
not an adequate approximation of {e}B (n). The fear will become groundless, after it
is shown that B satisfies the even-numbered requirements. If

(9) n(σ,e)φC<σ & {etfy (n(σ,e)) = 0,

then add n(σ,e) to C<σ to obtain Cσ, and let J(σ,e) be the "least" finite subset of
ω — B<σ that includes J(<σ,e) and is needed for the computation of the second
half of (9).

If (9) is false, then Cσ = C<σ and J(σ, e) = J( < σ, e). End of construction. In both
cases it is understood that no function changes unless otherwise indicated. For
example, in case (1), r(σ,e) = r(< σ,e).

The first order of business is to prove (4). Assume ω — B<δ is infinite
& r ( < δ, e) < ω & n ( < δ, e) < ω for all δ < σ. Fix e and trace the behavior of r (<5, e)
as δ increases from 0 to σ. Each change corresponds to the addition of an element
to B for the sake of req. 2e0 for some e0 < e. At most one such addition occurs on
behalf of req. 2e0 thanks to the clause, "βf0 nB<δ = φ'\ which precedes any such
addition at stage δ. Thus r(δ,e) charges at most e + 1 times, and so r(< σ,e) < ω.
Then ω — B< σ is infinite, since the range of λe\r(< σ,e) is infinite and is contained
inω — B<σ. The behavior of n(δ,e) as δ increases from 0 to σ is similar to that of
r(δ, e\ so n(< σ,e)<ω.

The above reasoning also shows r(σ9e) changes only finitely often as σ
approaches ω^κ. Let

r(e) = lim r(σ, e)
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Then ω — B is infinite, since the range of λe\r(e) is infinite and is contained in
ω-B.

J(σ,e) changes only finitely often as σ approaches ωfκ, since each such change is
occasioned by an attempt to satisfy req 2e0 for some e0 < e. Since each J(σ,e) is

finite, lim J{σ,e) must be finite, and so there is no substantial obstacle to satisfying
σ

an even-numbered requirement. Consequently ω — B contains no infinite meta-
finite set, and so (8) is an excellent approximation of {e}B(rή.

Fix e to show req 2e + 1 is met. Let n be lim n(σ,e\ and let σ0 be the stage
σ

at which the final value of n(σ,e) is attained. If (9) holds for some σ > σ0 such that
h{σ) = 2e + 1, then C(n) = 1. Also

J(σ,e) ^ω-B,

because otherwise (7) would force an increase in λσ\ n(σ,e) at some stage after stage
σ. Hence

Suppose (9)fails for all σ > σ0. Then nφC, because n(σo,e)φC<σo, and because the
one-one-ness of λjm\z(j,m) prevents n from being put in C for the sake of req 2/ + 1
whenj / e. It follows that {e}B(ή} cannot equal 0, since otherwise (9) would hold for
all sufficiently large σ. D

The next result, promised in subsection 3.I.V., is the failure of < w to be transitive
for ΠI sets. Note that Lemmas 1.1 and 1.2 imply < w is transitive on hyperregular,
metarecursively enumerable sets.

2.5 Corollary (Driscoll 1968). There exist Π\ sets A, B and C such that A<MBand
B<wQbut A£WC.

Proof. By Theorem 2.4 there are Π} sets A and C such that A ^ w C and C is not
hyperarithmetic. Let g metarecursively enumerate C without repetitions, and let
Dg be the deficiency set of g. Dg is an ω-set, as defined in subsection 4.4.V. By
Theorem 4.6.V there is a metacomplete Π} set B such that B<fDg. Hence
A <MB. According to Lemma 4.2.(v).V, Dg <M C, so B < w C. D

2.6 Further Results. The priority arguments of Theorems 2.3 and 2.4 can be easily
modified to obtain a familiar form of the solution to Post's problem, the existence
of two metarecursively enumerable sets (and two Π} sets) such that neither is
weakly metarecursive in the other. The e-th negative requirement is injured at most
2e times, rather than e + 1 times as in 2.3.

Call a Π{ set B maximal if ω — B is infinite and every Πj superset of B differs
finitely from either B or ω. The Friedberg maximal set construction of classical
recursion theory lifts to the Πj case via metarecursion theory. As in the proof of
Theorem 2.4 requirements are indexed by finite ordinals. Unlike the classical case B
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will be infinite at intermediate stages of the construction, and so some care is
needed to keep ω — B infinite.

Driscoll 1968 showed that the metarecursively enumerable degrees are dense.
His argument is modeled on the classical case, but he makes several departures.
Suppose B and C are metarecursively enumerable, and B < M C. By Theorem 4.3.V
it is safe to assume B and C are regular. Without regularity it seems difficult to
begin looking for D such that B < M D < M C. If B is hyperregular, then DriscolΓs
argument is close to the classical case. If B is not hyperregular, then he observes
there is a n / < WB such that/is a one-one map of ω onto ω^κ. Then/is used to make
ω, rather than ω^ κ, the domain of preservation requirements associated with D.
The regularity of B is used to develop a suitable metarecursive approximation of/
DriscolΓs theorem is a special case of Shore's density theorem proved at the end of
Part C.

2.7-2.12 Exercises

2.7. Find two hyperregular, metarecursively enumerable sets such that neither is
weakly metarecursive in the other.

2.8. Find two Π} sets such that neither is weakly metarecursive in the other.

2.9. Find a maximal Π} set. (A Π} set A is maximal iff* ω — A is infinite and for
all Π\ B,iϊ A^B^ω, then B - A or ω - B is finite.)

2.10. For each B c ω ^κ d e f i n e c+(E,B) as C(E,B) was in Exercise 3.8.V. save that
computations of arbitrary height are allowed. Kreisel calls A computable
from B (in symbols A <CB) if there is an E with principal function letter/
such that

δφA~(f(δ_)=l)eC+(E,B)

for all δ < ω^κ. Show < c is transitive. Show there are only two
c-degrees of Π} sets.

2.11. Suppose B is regular and hyperregular, and A <CB. Show A <WB.

2.12. Find two metarecursively enumerable sets such that neither is computable
from the other.

3. Simpson's Dichotomy

Let MS be the set of all metarecursively enumerable degrees and ^f the set of all
members of 0tS with hyperregular representatives. Lemmas 1.1 and 1.2 imply J f is
an initial segment of 0t&. 01$ — J f is non-empty, since it contains the meta-degrees
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of all non-hyperarithmetic Π} sets. Simpson's dichotomy says it contains nothing
else.

3.1 Proposition. Suppose B is a non-hyperarithmetic Πj set. Then there exists a
simple Tί\ set C such that B=fC.

Proof, f is a one-one, metarecursive function whose range is B, and
{Hσ\σ < ω^κ} is a metarecursive enumeration of all infinite, hyperarithmetic sets.
C will be the union of a non-decreasing, metarecursive sequence {Cσ\σ < ω^κ} of
hyperarithmetic sets.

C° = 0 and Cλ = u {Cσ\σ < λ] for λ a limit. To define Cσ + \ assume ω - Cσ is
infinite, and let

{aσ

0 < a\ < aσ

2 < . . . } = ω - C σ ,

b = μa\_aeHσ & a>aσ

f{σ)~],

The assumption that ω — Cσ is infinite is proved by induction on σ. Suppose it is
true for all σ < λ. Fix m to show ω — Cλ has at least m members. Let τ be such that

Then (Oi<m(σ)τ<<χ<λ[αi = aΐ = ai~\ The argument is valid when λ = ω^ κ, hence
ω — C is infinite.

Let a{ = lim αf. If C were not simple, then there would be an infinite hyper-
σ

arithmetic H ̂  ω - C, and a σ such that H = Hσ and i f f f n C f f + 1 / 0 . Finally

C =f B because

& < = αj. D

3.2 Theorem (Simpson 1971). If A is a non-hyperregular, metarecursively enumerable
set, then there exists a H{ set B of the same metadegree as A.

Proof. By 1.3 and 3.1 there is a simple Π} set C <WA. Let / metarecursively
enumerate C without repetitions. Define B =f[A].

Clearly A < M B. To see B < MA consider a typical metafinite K ^ cB.f~x [X] is
a meta r.e. subset of cA. By Exercise 4.8.V, A can be assumed to be simple. Hence
/"xLK] is bounded above strictly by some δ, and KnC = Kn/[(5]. Thus KnC and
K — C are metafinite. Since C is simple K — C is finite. In short, for metafinite K,

K^cB^K-C is finite.
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Let F range over all finite subsets of ω^κ. Then

& F<=cC

& H<=C &f-

(H ranges over the metafinite sets.) It follows that B<MA, since
C<WA. D




